
CUDNN

DU-06702-001_v07 | October 2017

Developer Guide

www.nvidia.com
cuDNN DU-06702-001_v07 | ii

TABLE OF CONTENTS

Chapter 1. Overview.. 1
Chapter 2. General Description... 2

2.1. Programming Model...2
2.2. Notation.. 2
2.3. Tensor Descriptor... 3

2.3.1. WXYZ Tensor Descriptor.. 3
2.3.2. 4-D Tensor Descriptor...4
2.3.3. 5-D Tensor Description... 4
2.3.4. Fully-packed tensors.. 4
2.3.5. Partially-packed tensors..4
2.3.6. Spatially packed tensors... 5
2.3.7. Overlapping tensors... 5

2.4. Thread Safety... 5
2.5. Reproducibility (determinism).. 5
2.6. Scaling parameters alpha and beta..5
2.7. Tensor Core Operations..6

2.7.1. Tensor Core Operations Notes...7
2.8. GPU and driver requirements.. 7
2.9. Backward compatibility and deprecation policy...8
2.10. Grouped Convolutions.. 8

Chapter 3. cuDNN Datatypes Reference... 10
3.1. cudnnHandle_t... 10
3.2. cudnnStatus_t.. 10
3.3. cudnnTensorDescriptor_t... 11
3.4. cudnnFilterDescriptor_t.. 12
3.5. cudnnConvolutionDescriptor_t...12
3.6. cudnnMathType_t.. 12
3.7. cudnnNanPropagation_t.. 12
3.8. cudnnDeterminism_t.. 13
3.9. cudnnActivationDescriptor_t...13
3.10. cudnnPoolingDescriptor_t...13
3.11. cudnnOpTensorOp_t..13
3.12. cudnnOpTensorDescriptor_t.. 14
3.13. cudnnReduceTensorOp_t.. 14
3.14. cudnnReduceTensorIndices_t... 15
3.15. cudnnIndicesType_t.. 15
3.16. cudnnReduceTensorDescriptor_t... 15
3.17. cudnnCTCLossDescriptor_t..16
3.18. cudnnDataType_t...16
3.19. cudnnTensorFormat_t..16

www.nvidia.com
cuDNN DU-06702-001_v07 | iii

3.20. cudnnConvolutionMode_t... 17
3.21. cudnnConvolutionFwdPreference_t... 17
3.22. cudnnConvolutionFwdAlgo_t... 18
3.23. cudnnConvolutionFwdAlgoPerf_t...19
3.24. cudnnConvolutionBwdFilterPreference_t...19
3.25. cudnnConvolutionBwdFilterAlgo_t...20
3.26. cudnnConvolutionBwdFilterAlgoPerf_t..21
3.27. cudnnConvolutionBwdDataPreference_t..21
3.28. cudnnConvolutionBwdDataAlgo_t..22
3.29. cudnnConvolutionBwdDataAlgoPerf_t...23
3.30. cudnnSoftmaxAlgorithm_t.. 24
3.31. cudnnSoftmaxMode_t..24
3.32. cudnnPoolingMode_t... 24
3.33. cudnnActivationMode_t... 25
3.34. cudnnLRNMode_t... 25
3.35. cudnnDivNormMode_t... 25
3.36. cudnnBatchNormMode_t.. 26
3.37. cudnnRNNDescriptor_t.. 26
3.38. cudnnPersistentRNNPlan_t..27
3.39. cudnnRNNMode_t...27
3.40. cudnnDirectionMode_t...28
3.41. cudnnRNNInputMode_t.. 28
3.42. cudnnRNNAlgo_t..29
3.43. cudnnCTCLossAlgo_t... 29
3.44. cudnnDropoutDescriptor_t..30
3.45. cudnnSpatialTransformerDescriptor_t...30
3.46. cudnnSamplerType_t...30
3.47. cudnnErrQueryMode_t... 30

Chapter 4. cuDNN API Reference... 32
4.1. cudnnGetVersion...32
4.2. cudnnGetCudartVersion...32
4.3. cudnnGetProperty... 32
4.4. cudnnGetErrorString.. 33
4.5. cudnnQueryRuntimeError...33
4.6. cudnnCreate..35
4.7. cudnnDestroy...36
4.8. cudnnSetStream..36
4.9. cudnnGetStream... 37
4.10. cudnnCreateTensorDescriptor.. 37
4.11. cudnnSetTensor4dDescriptor... 38
4.12. cudnnSetTensor4dDescriptorEx...39
4.13. cudnnGetTensor4dDescriptor... 40
4.14. cudnnSetTensorNdDescriptor... 41

www.nvidia.com
cuDNN DU-06702-001_v07 | iv

4.15. cudnnGetTensorNdDescriptor...42
4.16. cudnnGetTensorSizeInBytes...43
4.17. cudnnDestroyTensorDescriptor... 44
4.18. cudnnTransformTensor...44
4.19. cudnnAddTensor.. 45
4.20. cudnnOpTensor... 46
4.21. cudnnReduceTensor.. 48
4.22. cudnnSetTensor...50
4.23. cudnnScaleTensor.. 50
4.24. cudnnCreateFilterDescriptor... 51
4.25. cudnnSetFilter4dDescriptor...51
4.26. cudnnGetFilter4dDescriptor.. 52
4.27. cudnnSetFilterNdDescriptor.. 53
4.28. cudnnGetFilterNdDescriptor..54
4.29. cudnnDestroyFilterDescriptor.. 55
4.30. cudnnCreateConvolutionDescriptor... 55
4.31. cudnnSetConvolutionMathType...55
4.32. cudnnGetConvolutionMathType.. 56
4.33. cudnnSetConvolutionGroupCount..56
4.34. cudnnGetConvolutionGroupCount... 56
4.35. cudnnSetConvolution2dDescriptor...57
4.36. cudnnGetConvolution2dDescriptor.. 58
4.37. cudnnGetConvolution2dForwardOutputDim..59
4.38. cudnnSetConvolutionNdDescriptor...60
4.39. cudnnGetConvolutionNdDescriptor.. 61
4.40. cudnnGetConvolutionNdForwardOutputDim... 63
4.41. cudnnDestroyConvolutionDescriptor.. 64
4.42. cudnnFindConvolutionForwardAlgorithm... 64
4.43. cudnnFindConvolutionForwardAlgorithmEx.. 66
4.44. cudnnGetConvolutionForwardAlgorithm.. 67
4.45. cudnnGetConvolutionForwardAlgorithm_v7..69
4.46. cudnnGetConvolutionForwardWorkspaceSize.. 70
4.47. cudnnConvolutionForward.. 71
4.48. cudnnConvolutionBiasActivationForward... 77
4.49. cudnnConvolutionBackwardBias..80
4.50. cudnnFindConvolutionBackwardFilterAlgorithm...81
4.51. cudnnFindConvolutionBackwardFilterAlgorithmEx.. 82
4.52. cudnnGetConvolutionBackwardFilterAlgorithm..84
4.53. cudnnGetConvolutionBackwardFilterAlgorithm_v7... 85
4.54. cudnnGetConvolutionBackwardFilterWorkspaceSize..86
4.55. cudnnConvolutionBackwardFilter..87
4.56. cudnnFindConvolutionBackwardDataAlgorithm..92
4.57. cudnnFindConvolutionBackwardDataAlgorithmEx... 93

www.nvidia.com
cuDNN DU-06702-001_v07 | v

4.58. cudnnGetConvolutionBackwardDataAlgorithm...95
4.59. cudnnGetConvolutionBackwardDataAlgorithm_v7.. 96
4.60. cudnnGetConvolutionBackwardDataWorkspaceSize...97
4.61. cudnnConvolutionBackwardData...98
4.62. cudnnSoftmaxForward... 103
4.63. cudnnSoftmaxBackward..104
4.64. cudnnCreatePoolingDescriptor..106
4.65. cudnnSetPooling2dDescriptor... 106
4.66. cudnnGetPooling2dDescriptor...107
4.67. cudnnSetPoolingNdDescriptor...108
4.68. cudnnGetPoolingNdDescriptor.. 109
4.69. cudnnDestroyPoolingDescriptor...110
4.70. cudnnGetPooling2dForwardOutputDim.. 110
4.71. cudnnGetPoolingNdForwardOutputDim..111
4.72. cudnnPoolingForward.. 112
4.73. cudnnPoolingBackward...113
4.74. cudnnActivationForward...115
4.75. cudnnActivationBackward... 117
4.76. cudnnCreateActivationDescriptor.. 118
4.77. cudnnSetActivationDescriptor.. 119
4.78. cudnnGetActivationDescriptor.. 119
4.79. cudnnDestroyActivationDescriptor... 120
4.80. cudnnCreateLRNDescriptor..120
4.81. cudnnSetLRNDescriptor.. 121
4.82. cudnnGetLRNDescriptor..122
4.83. cudnnDestroyLRNDescriptor...122
4.84. cudnnLRNCrossChannelForward.. 122
4.85. cudnnLRNCrossChannelBackward...124
4.86. cudnnDivisiveNormalizationForward... 125
4.87. cudnnDivisiveNormalizationBackward... 127
4.88. cudnnBatchNormalizationForwardInference..129
4.89. cudnnBatchNormalizationForwardTraining..131
4.90. cudnnBatchNormalizationBackward..133
4.91. cudnnDeriveBNTensorDescriptor..135
4.92. cudnnCreateRNNDescriptor... 136
4.93. cudnnDestroyRNNDescriptor.. 137
4.94. cudnnCreatePersistentRNNPlan...137
4.95. cudnnSetPersistentRNNPlan... 137
4.96. cudnnDestroyPersistentRNNPlan..138
4.97. cudnnSetRNNDescriptor..138
4.98. cudnnSetRNNDescriptor_v6..139
4.99. cudnnSetRNNDescriptor_v5..140
4.100. cudnnGetRNNWorkspaceSize.. 141

www.nvidia.com
cuDNN DU-06702-001_v07 | vi

4.101. cudnnGetRNNTrainingReserveSize.. 142
4.102. cudnnGetRNNParamsSize...143
4.103. cudnnGetRNNLinLayerMatrixParams..144
4.104. cudnnGetRNNLinLayerBiasParams.. 146
4.105. cudnnRNNForwardInference... 148
4.106. cudnnRNNForwardTraining... 151
4.107. cudnnRNNBackwardData... 155
4.108. cudnnRNNBackwardWeights... 160
4.109. cudnnGetCTCLossWorkspaceSize..162
4.110. cudnnCTCLoss..163
4.111. cudnnCreateDropoutDescriptor... 165
4.112. cudnnDestroyDropoutDescriptor.. 165
4.113. cudnnDropoutGetStatesSize... 166
4.114. cudnnDropoutGetReserveSpaceSize.. 166
4.115. cudnnSetDropoutDescriptor..167
4.116. cudnnGetDropoutDescriptor... 168
4.117. cudnnRestoreDropoutDescriptor.. 168
4.118. cudnnDropoutForward.. 169
4.119. cudnnDropoutBackward.. 171
4.120. cudnnCreateSpatialTransformerDescriptor.. 172
4.121. cudnnDestroySpatialTransformerDescriptor... 173
4.122. cudnnSetSpatialTransformerNdDescriptor... 173
4.123. cudnnSpatialTfGridGeneratorForward... 174
4.124. cudnnSpatialTfGridGeneratorBackward..175
4.125. cudnnSpatialTfSamplerForward... 176
4.126. cudnnSpatialTfSamplerBackward... 177

Chapter 5. Acknowledgments.. 180
5.1. University of Tennessee...180
5.2. University of California, Berkeley...180
5.3. Facebook AI Research, New York..181

www.nvidia.com
cuDNN DU-06702-001_v07 | 1

Chapter 1.
OVERVIEW

NVIDIA® cuDNN is a GPU-accelerated library of primitives for deep neural networks.
It provides highly tuned implementations of routines arising frequently in DNN
applications:

‣ Convolution forward and backward, including cross-correlation
‣ Pooling forward and backward
‣ Softmax forward and backward
‣ Neuron activations forward and backward:

‣ Rectified linear (ReLU)
‣ Sigmoid
‣ Hyperbolic tangent (TANH)

‣ Tensor transformation functions
‣ LRN, LCN and batch normalization forward and backward

cuDNN's convolution routines aim for performance competitive with the fastest GEMM
(matrix multiply) based implementations of such routines while using significantly less
memory.

cuDNN features customizable data layouts, supporting flexible dimension ordering,
striding, and subregions for the 4D tensors used as inputs and outputs to all of its
routines. This flexibility allows easy integration into any neural network implementation
and avoids the input/output transposition steps sometimes necessary with GEMM-based
convolutions.

cuDNN offers a context-based API that allows for easy multithreading and (optional)
interoperability with CUDA streams.

www.nvidia.com
cuDNN DU-06702-001_v07 | 2

Chapter 2.
GENERAL DESCRIPTION

Basic concepts are described in this chapter.

2.1. Programming Model
The cuDNN Library exposes a Host API but assumes that for operations using the GPU,
the necessary data is directly accessible from the device.

An application using cuDNN must initialize a handle to the library context by calling
cudnnCreate(). This handle is explicitly passed to every subsequent library function
that operates on GPU data. Once the application finishes using cuDNN, it can release
the resources associated with the library handle using cudnnDestroy() . This
approach allows the user to explicitly control the library's functioning when using
multiple host threads, GPUs and CUDA Streams. For example, an application can use
cudaSetDevice() to associate different devices with different host threads and in each
of those host threads, use a unique cuDNN handle which directs library calls to the
device associated with it. cuDNN library calls made with different handles will thus
automatically run on different devices. The device associated with a particular cuDNN
context is assumed to remain unchanged between the corresponding cudnnCreate()
and cudnnDestroy() calls. In order for the cuDNN library to use a different device
within the same host thread, the application must set the new device to be used by
calling cudaSetDevice() and then create another cuDNN context, which will be
associated with the new device, by calling cudnnCreate().

2.2. Notation
As of CUDNN v4 we have adopted a mathematicaly-inspired notation for layer inputs
and outputs using x,y,dx,dy,b,w for common layer parameters. This was done to
improve readability and ease of understanding of parameters meaning. All layers now
follow a uniform convention that during inference

y = layerFunction(x, otherParams).

General Description

www.nvidia.com
cuDNN DU-06702-001_v07 | 3

And during backpropagation

(dx, dOtherParams) = layerFunctionGradient(x,y,dy,otherParams)

For convolution the notation is

y = x*w+b

where w is the matrix of filter weights, x is the previous layer's data (during
inference), y is the next layer's data, b is the bias and * is the convolution operator.
In backpropagation routines the parameters keep their meanings. dx,dy,dw,db
always refer to the gradient of the final network error function with respect to a given
parameter. So dy in all backpropagation routines always refers to error gradient
backpropagated through the network computation graph so far. Similarly other
parameters in more specialized layers, such as, for instance, dMeans or dBnBias refer to
gradients of the loss function wrt those parameters.

w is used in the API for both the width of the x tensor and convolution filter
matrix. To resolve this ambiguity we use w and filter notation interchangeably for
convolution filter weight matrix. The meaning is clear from the context since the
layer width is always referenced near it's height.

2.3. Tensor Descriptor
The cuDNN Library describes data holding images, videos and any other data with
contents with a generic n-D tensor defined with the following parameters :

‣ a dimension dim from 3 to 8
‣ a data type (32-bit floating point, 64 bit-floating point, 16 bit floating point...)
‣ dim integers defining the size of each dimension
‣ dim integers defining the stride of each dimension (e.g the number of elements to

add to reach the next element from the same dimension)

The first two dimensions define respectively the batch size n and the number of features
maps c. This tensor definition allows for example to have some dimensions overlapping
each others within the same tensor by having the stride of one dimension smaller than
the product of the dimension and the stride of the next dimension. In cuDNN, unless
specified otherwise, all routines will support tensors with overlapping dimensions for
forward pass input tensors, however, dimensions of the output tensors cannot overlap.
Even though this tensor format supports negative strides (which can be useful for
data mirroring), cuDNN routines do not support tensors with negative strides unless
specified otherwise.

2.3.1. WXYZ Tensor Descriptor
Tensor descriptor formats are identified using acronyms, with each letter referencing a
corresponding dimension. In this document, the usage of this terminology implies :

‣ all the strides are strictly positive

General Description

www.nvidia.com
cuDNN DU-06702-001_v07 | 4

‣ the dimensions referenced by the letters are sorted in decreasing order of their
respective strides

2.3.2. 4-D Tensor Descriptor
A 4-D Tensor descriptor is used to define the format for batches of 2D images with 4
letters : N,C,H,W for respectively the batch size, the number of feature maps, the height
and the width. The letters are sorted in decreasing order of the strides. The commonly
used 4-D tensor formats are :

‣ NCHW
‣ NHWC
‣ CHWN

2.3.3. 5-D Tensor Description
A 5-D Tensor descriptor is used to define the format of batch of 3D images with 5 letters :
N,C,D,H,W for respectively the batch size, the number of feature maps, the depth, the
height and the width. The letters are sorted in descreasing order of the strides. The
commonly used 5-D tensor formats are called :

‣ NCDHW
‣ NDHWC
‣ CDHWN

2.3.4. Fully-packed tensors
A tensor is defined as XYZ-fully-packed if and only if :

‣ the number of tensor dimensions is equal to the number of letters preceding the
fully-packed suffix.

‣ the stride of the i-th dimension is equal to the product of the (i+1)-th dimension by
the (i+1)-th stride.

‣ the stride of the last dimension is 1.

2.3.5. Partially-packed tensors
The partially 'XYZ-packed' terminology only applies in a context of a tensor format
described with a superset of the letters used to define a partially-packed tensor. A
WXYZ tensor is defined as XYZ-packed if and only if :

‣ the strides of all dimensions NOT referenced in the -packed suffix are greater or
equal to the product of the next dimension by the next stride.

‣ the stride of each dimension referenced in the -packed suffix in position i is equal to
the product of the (i+1)-st dimension by the (i+1)-st stride.

‣ if last tensor's dimension is present in the -packed suffix, it's stride is 1.

For example a NHWC tensor WC-packed means that the c_stride is equal to 1 and
w_stride is equal to c_dim x c_stride. In practice, the -packed suffix is usually with

General Description

www.nvidia.com
cuDNN DU-06702-001_v07 | 5

slowest changing dimensions of a tensor but it is also possible to refer to a NCHW tensor
that is only N-packed.

2.3.6. Spatially packed tensors
Spatially-packed tensors are defined as partially-packed in spatial dimensions.

For example a spatially-packed 4D tensor would mean that the tensor is either NCHW
HW-packed or CNHW HW-packed.

2.3.7. Overlapping tensors
A tensor is defined to be overlapping if a iterating over a full range of dimensions
produces the same address more than once.

In practice an overlapped tensor will have stride[i-1] < stride[i]*dim[i] for some of the i
from [1,nbDims] interval.

2.4. Thread Safety
The library is thread safe and its functions can be called from multiple host threads, as
long as threads to do not share the same cuDNN handle simultaneously.

2.5. Reproducibility (determinism)
By design, most of cuDNN's routines from a given version generate the same bit-wise
results across runs when executed on GPUs with the same architecture and the same
number of SMs. However, bit-wise reproducibility is not guaranteed across versions,
as the implementation of a given routine may change. With the current release, the
following routines do not guarantee reproducibility because they use atomic operations:

‣ cudnnConvolutionBackwardFilter when
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 or
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 is used

‣ cudnnConvolutionBackwardData when
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 is used

‣ cudnnPoolingBackward when CUDNN_POOLING_MAX is used
‣ cudnnSpatialTfSamplerBackward

2.6. Scaling parameters alpha and beta
Many cuDNN routines like cudnnConvolutionForward take pointers to scaling
factors (in host memory), that are used to blend computed values with initial
values in the destination tensor as follows: dstValue = alpha[0]*computedValue +
beta[0]*priorDstValue. When beta[0] is zero, the output is not read and may contain any

General Description

www.nvidia.com
cuDNN DU-06702-001_v07 | 6

uninitialized data (including NaN). The storage data type for alpha[0], beta[0] is float
for HALF and FLOAT tensors, and double for DOUBLE tensors. These parameters are
passed using a host memory pointer.

For improved performance it is advised to use beta[0] = 0.0. Use a non-zero value for
beta[0] only when blending with prior values stored in the output tensor is needed.

2.7. Tensor Core Operations
cuDNN v7 introduces acceleration of compute intensive routines using Tensor Core
hardware on supported GPU SM versions. Tensor Core acceleration (using Tensor Core
Operations) can be exploited by the library user via the cudnnMathType_t enumerator.
This enumerator specifies the available options for Tensor Core enablement and is
expected to be applied on a per-routine basis.

Kernels using Tensor Core Operations for are available for both Convolutions and
RNNs.

The Convolution functions are:

‣ cudnnConvolutionForward
‣ cudnnConvolutionBackwardData
‣ cudnnConvolutionBackwardFilter

Tensor Core Operations kernels will be triggered in these paths only when:

‣ cudnnSetConvolutionMathType is called on the appropriate convolution descriptor
setting mathType to CUDNN_TENSOR_OP_MATH.

‣ cudnnConvolutionForward is called using algo =
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
cudnnConvolutionBackwardData using algo =
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 or
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
and cudnnConvolutionBackwardFilter using algo =
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 or
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED.

For algorithms other than *_ALGO_WINOGRAD_NONFUSED, the following are some
of the requirements to run Tensor Core operations:

‣ Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and
dwDesc as applicable) have dataType = CUDNN_DATA_HALF.

‣ The number of Input and Output feature maps is a multiple of 8.
‣ The Filter is of type CUDNN_TENSOR_NCHW or CUDNN_TENSOR_NHWC.

When using a filter of type CUDNN_TENSOR_NHWC, Input, Filter and Output
data pointers (X, Y, W, dX, dY, and dW as applicable) need to be aligned to 128 bit
boundaries.

The RNN functions are:

General Description

www.nvidia.com
cuDNN DU-06702-001_v07 | 7

‣ cudnnRNNForwardInference
‣ cudnnRNNForwardTraining
‣ cudnnRNNBackwardData
‣ cudnnRNNBackwardWeights

Tensor Core Operations kernels will be triggered in these paths only when:

‣ cudnnSetRNNMatrixMathType is called on the appropriate RNN descriptor setting
mathType to CUDNN_TENSOR_OP_MATH.

‣ All routines are called using algo = CUDNN_RNN_ALGO_STANDARD.
‣ Hidden State size, Input size and Batch size are all multiples of 8.

For all cases, the CUDNN_TENSOR_OP_MATH enumerator is an indicator that the
use of Tensor Cores is permissible, but not required. cuDNN may prefer not to use
Tensor Core Operations (for instance, when the problem size is not suited to Tensor Core
acceleration), and instead use an alternative implementation based on regular floating
point operations.

2.7.1. Tensor Core Operations Notes
Some notes on Tensor Core Operations use in cuDNN v7 on sm_70:

Tensor Core operations are supported on the Volta GPU family, those operations
perform parallel floating point accumulation of multiple floating point products.
Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the
library will use Tensor Core operations as mention previously. The default is
CUDNN_DEFAULT_MATH, this default indicates that the Tensor Core operations
will be avoided by the library. The default mode is a serialized operation, the Tensor
Core operations are parallelized operation, thus the two might result in slight different
numerical results due to the different sequencing of operations. Note: The library falls
back to the default math mode when Tensor Core operations are not supported or not
permitted.

The result of multiplying two matrices using Tensor Core Operations is very close, but
not always identical, to the product achieved using some sequence of legacy scalar
floating point operations. So cuDNN requires explicit user opt-in before enabling the
use of Tensor Core Operations. However, experiments training common Deep Learning
models show negligible difference between using Tensor Core Operations and legacy
floating point paths as measured by both final network accuracy and iteration count to
convergence. Consequently, the library treats both modes of operation as functionally
indistinguishable, and allows for the legacy paths to serve as legitimate fallbacks for
cases in which the use of Tensor Core Operations is unsuitable.

2.8. GPU and driver requirements
cuDNN v7.0 supports NVIDIA GPUs of compute capability 3.0 and higher. For x86_64
platform, cuDNN v7.0 comes with two deliverables: one requires a NVIDIA Driver
compatible with CUDA Toolkit 8.0, the other requires a NVIDIA Driver compatible with
CUDA Toolkit 9.0.

General Description

www.nvidia.com
cuDNN DU-06702-001_v07 | 8

If you are using cuDNN with a Volta GPU, version 7 or later is required.

2.9. Backward compatibility and deprecation
policy
When changing the API of an existing cuDNN function "foo" (usually to support some
new functionality), first, a new routine "foo_v<n>" is created where n represents the
cuDNN version where the new API is first introduced, leaving "foo" untouched. This
ensures backward compatibility with the version n-1 of cuDNN. At this point, "foo" is
considered deprecated, and should be treated as such by users of cuDNN. We gradually
eliminate deprecated and suffixed API entries over the course of a few releases of the
library per the following policy:

‣ In release n+1, the legacy API entry "foo" is remapped to a new API "foo_v<f>"
where f is some cuDNN version anterior to n.

‣ Also in release n+1, the unsuffixed API entry "foo" is modified to have the same
signature as "foo_<n>". "foo_<n>" is retained as-is.

‣ The deprecated former API entry with an anterior suffix _v<f> and new API entry
with suffix _v<n> are maintained in this release.

‣ In release n+2, both suffixed entries of a given entry are removed.

As a rule of thumb, when a routine appears in two forms, one with a suffix and one with
no suffix, the non-suffixed entry is to be treated as deprecated. In this case, it is strongly
advised that users migrate to the new suffixed API entry to guarantee backwards
compatibility in the following cuDNN release. When a routine appears with multiple
suffixes, the unsuffixed API entry is mapped to the higher numbered suffix. In that
case it is strongly advised to use the non-suffixed API entry to guarantee backward
compatibiliy with the following cuDNN release.

2.10. Grouped Convolutions
cuDNN supports Grouped Convolutions by setting GroupCount > 1 using
cudnnSetConvolutionGroupCount(). In memory, all input/output tensors store all
independent groups. In this way, all tensor descriptors must describe the size of
the entire convolution (as opposed to specifying the sizes per group). See following
dimensions/strides explaining how to run Grouped Convolutions for NCHW format
for 2-D convolutions. Note that other formats and 3-D convolutions are supported (see
associated Convolution API for info on support); the tensor stridings for group count of
1 should still work for any group count.

Note that the symbols "*" and "/" are used to indicate multiplication and division.

xDesc or dxDesc wDesc or dwDesc convDesc yDesc or dyDesc

Dimensions: [batch_size,
input_channels, x_height,
x_width]

Dimensions:
[output_channels,
input_channels/

GroupCount:
group_count

Dimensions: [batch_size,
output_channels, y_height,
y_width]

General Description

www.nvidia.com
cuDNN DU-06702-001_v07 | 9

xDesc or dxDesc wDesc or dwDesc convDesc yDesc or dyDesc

Strides:
[output_channels*x_height*x_width,
x_height*x_width, x_width,
1]

group_count, w_height,
w_width]

Format: NCHW

Strides:
[output_channels*y_height*y_width,
y_height*y_width, y_width,
1]

www.nvidia.com
cuDNN DU-06702-001_v07 | 10

Chapter 3.
CUDNN DATATYPES REFERENCE

This chapter describes all the types and enums of the cuDNN library API.

3.1. cudnnHandle_t
cudnnHandle_t is a pointer to an opaque structure holding the cuDNN library context.
The cuDNN library context must be created using cudnnCreate() and the returned
handle must be passed to all subsequent library function calls. The context should be
destroyed at the end using cudnnDestroy(). The context is associated with only one
GPU device, the current device at the time of the call to cudnnCreate(). However
multiple contexts can be created on the same GPU device.

3.2. cudnnStatus_t
cudnnStatus_t is an enumerated type used for function status returns. All cuDNN
library functions return their status, which can be one of the following values:

Values
CUDNN_STATUS_SUCCESS

The operation completed successfully.
CUDNN_STATUS_NOT_INITIALIZED

The cuDNN library was not initialized properly. This error is usually returned when
a call to cudnnCreate() fails or when cudnnCreate() has not been called prior to
calling another cuDNN routine. In the former case, it is usually due to an error in the
CUDA Runtime API called by cudnnCreate() or by an error in the hardware setup.

CUDNN_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuDNN library. This is usually caused by an
internal cudaMalloc() failure.

To correct: prior to the function call, deallocate previously allocated memory as much
as possible.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 11

CUDNN_STATUS_BAD_PARAM

An incorrect value or parameter was passed to the function.

To correct: ensure that all the parameters being passed have valid values.
CUDNN_STATUS_ARCH_MISMATCH

The function requires a feature absent from the current GPU device. Note that
cuDNN only supports devices with compute capabilities greater than or equal to 3.0.

To correct: compile and run the application on a device with appropriate compute
capability.

CUDNN_STATUS_MAPPING_ERROR

An access to GPU memory space failed, which is usually caused by a failure to bind a
texture.

To correct: prior to the function call, unbind any previously bound textures.

Otherwise, this may indicate an internal error/bug in the library.
CUDNN_STATUS_EXECUTION_FAILED

The GPU program failed to execute. This is usually caused by a failure to launch
some cuDNN kernel on the GPU, which can occur for multiple reasons.

To correct: check that the hardware, an appropriate version of the driver, and the
cuDNN library are correctly installed.

Otherwise, this may indicate a internal error/bug in the library.
CUDNN_STATUS_INTERNAL_ERROR

An internal cuDNN operation failed.
CUDNN_STATUS_NOT_SUPPORTED

The functionality requested is not presently supported by cuDNN.
CUDNN_STATUS_LICENSE_ERROR

The functionality requested requires some license and an error was detected when
trying to check the current licensing. This error can happen if the license is not
present or is expired or if the environment variable NVIDIA_LICENSE_FILE is not
set properly.

CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING

Runtime library required by RNN calls (libcuda.so or nvcuda.dll) cannot be found in
predefined search paths.

CUDNN_STATUS_RUNTIME_IN_PROGRESS

Some tasks in the user stream are not completed.
CUDNN_STATUS_RUNTIME_FP_OVERFLOW

Numerical overflow occurred during the GPU kernel execution.

3.3. cudnnTensorDescriptor_t

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 12

cudnnCreateTensorDescriptor_t is a pointer to an opaque structure holding the
description of a generic n-D dataset. cudnnCreateTensorDescriptor() is used
to create one instance, and one of the routrines cudnnSetTensorNdDescriptor(),
cudnnSetTensor4dDescriptor() or cudnnSetTensor4dDescriptorEx() must be
used to initialize this instance.

3.4. cudnnFilterDescriptor_t
cudnnFilterDescriptor_t is a pointer to an opaque structure holding the description
of a filter dataset. cudnnCreateFilterDescriptor() is used to create one instance,
and cudnnSetFilter4dDescriptor() or cudnnSetFilterNdDescriptor() must be
used to initialize this instance.

3.5. cudnnConvolutionDescriptor_t
cudnnConvolutionDescriptor_t is a pointer to an opaque structure holding the
description of a convolution operation. cudnnCreateConvolutionDescriptor()
is used to create one instance, and cudnnSetConvolutionNdDescriptor() or
cudnnSetConvolution2dDescriptor() must be used to initialize this instance.

3.6. cudnnMathType_t
cudnnMathType_t is an enumerated type used to indicate if the use of Tensor Core
Operations is permitted a given library routine.

Values
CUDNN_DEFAULT_MATH

Tensor Core Operations are not used.
CUDNN_TENSOR_OP_MATH

The use of Tensor Core Operations is permitted.

3.7. cudnnNanPropagation_t
cudnnNanPropagation_t is an enumerated type used to indicate if a given routine
should propagate Nan numbers. This enumerated type is used as a field for the
cudnnActivationDescriptor_t descriptor and cudnnPoolingDescriptor_t
descriptor.

Values
CUDNN_NOT_PROPAGATE_NAN

Nan numbers are not propagated

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 13

CUDNN_PROPAGATE_NAN

Nan numbers are propagated

3.8. cudnnDeterminism_t
cudnnDeterminism_t is an enumerated type used to indicate if the computed results
are deterministic (reproducible). See section 2.5 (Reproducibility) for more details on
determinism.

Values
CUDNN_NON_DETERMINISTIC

Results are not guaranteed to be reproducible
CUDNN_DETERMINISTIC

Results are guaranteed to be reproducible

3.9. cudnnActivationDescriptor_t
cudnnActivationDescriptor_t is a pointer to an opaque structure holding the
description of a activation operation. cudnnCreateActivationDescriptor() is used
to create one instance, and cudnnSetActivationDescriptor() must be used to
initialize this instance.

3.10. cudnnPoolingDescriptor_t
cudnnPoolingDescriptor_t is a pointer to an opaque structure holding
the description of a pooling operation. cudnnCreatePoolingDescriptor()
is used to create one instance, and cudnnSetPoolingNdDescriptor() or
cudnnSetPooling2dDescriptor() must be used to initialize this instance.

3.11. cudnnOpTensorOp_t
cudnnOpTensorOp_t is an enumerated type used to indicate the Tensor Core Operation
to be used by the cudnnOpTensor() routine. This enumerated type is used as a field for
the cudnnOpTensorDescriptor_t descriptor.

Values
CUDNN_OP_TENSOR_ADD

The operation to be performed is addition
CUDNN_OP_TENSOR_MUL

The operation to be performed is multiplication

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 14

CUDNN_OP_TENSOR_MIN

The operation to be performed is a minimum comparison
CUDNN_OP_TENSOR_MAX

The operation to be performed is a maximum comparison
CUDNN_OP_TENSOR_SQRT

The operation to be performed is square root, performed on only the A tensor
CUDNN_OP_TENSOR_NOT

The operation to be performed is negation, performed on only the A tensor

3.12. cudnnOpTensorDescriptor_t
cudnnOpTensorDescriptor_t is a pointer to an opaque structure holding the
description of a Tensor Ccore Operation, used as a parameter to cudnnOpTensor().
cudnnCreateOpTensorDescriptor() is used to create one instance, and
cudnnSetOpTensorDescriptor() must be used to initialize this instance.

3.13. cudnnReduceTensorOp_t
cudnnReduceTensorOp_t is an enumerated type used to indicate the Tensor Core
Operation to be used by the cudnnReduceTensor() routine. This enumerated type is
used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR_ADD

The operation to be performed is addition
CUDNN_REDUCE_TENSOR_MUL

The operation to be performed is multiplication
CUDNN_REDUCE_TENSOR_MIN

The operation to be performed is a minimum comparison
CUDNN_REDUCE_TENSOR_MAX

The operation to be performed is a maximum comparison
CUDNN_REDUCE_TENSOR_AMAX

The operation to be performed is a maximum comparison of absolute values
CUDNN_REDUCE_TENSOR_AVG

The operation to be performed is averaging
CUDNN_REDUCE_TENSOR_NORM1

The operation to be performed is addition of absolute values

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 15

CUDNN_REDUCE_TENSOR_NORM2

The operation to be performed is a square root of sum of squares
CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS

The operation to be performed is multiplication, not including elements of value zero

3.14. cudnnReduceTensorIndices_t
cudnnReduceTensorIndices_t is an enumerated type used to indicate whether
indices are to be computed by the cudnnReduceTensor() routine. This enumerated
type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR_NO_INDICES

Do not compute indices
CUDNN_REDUCE_TENSOR_FLATTENED_INDICES

Compute indices. The resulting indices are relative, and flattened.

3.15. cudnnIndicesType_t
cudnnIndicesType_t is an enumerated type used to indicate the data type for the
indices to be computed by the cudnnReduceTensor() routine. This enumerated type is
used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_32BIT_INDICES

Compute unsigned int indices
CUDNN_64BIT_INDICES

Compute unsigned long long indices
CUDNN_16BIT_INDICES

Compute unsigned short indices
CUDNN_8BIT_INDICES

Compute unsigned char indices

3.16. cudnnReduceTensorDescriptor_t
cudnnReduceTensorDescriptor_t is a pointer to an opaque structure
holding the description of a tensor reduction operation, used as a parameter to
cudnnReduceTensor(). cudnnCreateReduceTensorDescriptor() is used to create
one instance, and cudnnSetReduceTensorDescriptor() must be used to initialize
this instance.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 16

3.17. cudnnCTCLossDescriptor_t
cudnnCTCLossDescriptor_t is a pointer to an opaque structure holding the
description of a CTC loss operation. cudnnCreateCTCLossDescriptor() is used
to create one instance, cudnnSetCTCLossDescriptor() is be used to initialize this
instance, cudnnDestroyCTCLossDescriptor() is be used to destroy this instance.

3.18. cudnnDataType_t
cudnnDataType_t is an enumerated type indicating the data type to which a tensor
descriptor or filter descriptor refers.

Values
CUDNN_DATA_FLOAT

The data is 32-bit single-precision floating point (float).
CUDNN_DATA_DOUBLE

The data is 64-bit double-precision floating point (double).
CUDNN_DATA_HALF

The data is 16-bit floating point.
CUDNN_DATA_INT8

The data is 8-bit signed integer.
CUDNN_DATA_INT32

The data is 32-bit signed integer.
CUDNN_DATA_INT8x4

The data is 32-bit element composed of 4 8-bit signed integer. This data type is only
supported with tensor format CUDNN_TENSOR_NCHW_VECT_C.

3.19. cudnnTensorFormat_t
cudnnTensorFormat_t is an enumerated type used by
cudnnSetTensor4dDescriptor() to create a tensor with a pre-defined layout.

Values
CUDNN_TENSOR_NCHW

This tensor format specifies that the data is laid out in the following order: batch
size, feature maps, rows, columns. The strides are implicitly defined in such a way
that the data are contiguous in memory with no padding between images, feature
maps, rows, and columns; the columns are the inner dimension and the images are
the outermost dimension.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 17

CUDNN_TENSOR_NHWC

This tensor format specifies that the data is laid out in the following order: batch size,
rows, columns, feature maps. The strides are implicitly defined in such a way that
the data are contiguous in memory with no padding between images, rows, columns,
and feature maps; the feature maps are the inner dimension and the images are the
outermost dimension.

CUDNN_TENSOR_NCHW_VECT_C

This tensor format specifies that the data is laid out in the following order: batch
size, feature maps, rows, columns. However, each element of the tensor is a vector
of multiple feature maps. The length of the vector is carried by the data type of the
tensor. The strides are implicitly defined in such a way that the data are contiguous
in memory with no padding between images, feature maps, rows, and columns; the
columns are the inner dimension and the images are the outermost dimension. This
format is only supported with tensor data type CUDNN_DATA_INT8x4.

3.20. cudnnConvolutionMode_t
cudnnConvolutionMode_t is an enumerated type used by
cudnnSetConvolutionDescriptor() to configure a convolution descriptor. The
filter used for the convolution can be applied in two different ways, corresponding
mathematically to a convolution or to a cross-correlation. (A cross-correlation is
equivalent to a convolution with its filter rotated by 180 degrees.)

Values
CUDNN_CONVOLUTION

In this mode, a convolution operation will be done when applying the filter to the
images.

CUDNN_CROSS_CORRELATION

In this mode, a cross-correlation operation will be done when applying the filter to
the images.

3.21. cudnnConvolutionFwdPreference_t
cudnnConvolutionFwdPreference_t is an enumerated type used by
cudnnGetConvolutionForwardAlgorithm() to help the choice of the algorithm used
for the forward convolution.

Values
CUDNN_CONVOLUTION_FWD_NO_WORKSPACE

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() is
guaranteed to return an algorithm that does not require any extra workspace to be
provided by the user.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 18

CUDNN_CONVOLUTION_FWD_PREFER_FASTEST

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() will
return the fastest algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() will
return the fastest algorithm that fits within the memory limit that the user provided.

3.22. cudnnConvolutionFwdAlgo_t
cudnnConvolutionFwdAlgo_t is an enumerated type that exposes the different
algorithms available to execute the forward convolution operation.

Values
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data, but still needs some
memory workspace to precompute some indices in order to facilitate the implicit
construction of the matrix that holds the input tensor data

CUDNN_CONVOLUTION_FWD_ALGO_GEMM

This algorithm expresses the convolution as an explicit matrix product. A significant
memory workspace is needed to store the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_DIRECT

This algorithm expresses the convolution as a direct convolution (e.g without
implicitly or explicitly doing a matrix multiplication).

CUDNN_CONVOLUTION_FWD_ALGO_FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution.
A significant memory workspace is needed to store intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into
tiles. A significant memory workspace is needed to store intermediate results but less
than CUDNN_CONVOLUTION_FWD_ALGO_FFT for large size images.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution.
A reasonably sized workspace is needed to store intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution.
Significant workspace may be needed to store intermediate results.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 19

3.23. cudnnConvolutionFwdAlgoPerf_t
cudnnConvolutionFwdAlgoPerf_t is a structure containing performance results
returned by cudnnFindConvolutionForwardAlgorithm() or heuristic results
returned by cudnnGetConvolutionForwardAlgorithm_v7().

Data Members
cudnnConvolutionFwdAlgo_t algo

The algorithm run to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionForward(), this status will represent that error. Otherwise, this
status will be the return status of cudnnConvolutionForward().

‣ CUDNN_STATUS_ALLOC_FAILED if any error occured during workspace allocation
or if provided workspace is insufficient.

‣ CUDNN_STATUS_INTERNAL_ERROR if any error occured during timing
calculations or workspace deallocation.

‣ Otherwise, this will be the return status of cudnnConvolutionForward().

float time

The execution time of cudnnConvolutionForward() (in milliseconds).
size_t memory

The workspace size (in bytes).
cudnnDeterminism_t determinism

The determinism of the algorithm.
cudnnMathType_t mathType

The math type provided to the algorithm.
int reserved[3]

Reserved space for future properties.

3.24. cudnnConvolutionBwdFilterPreference_t
cudnnConvolutionBwdFilterPreference_t is an enumerated type used by
cudnnGetConvolutionBackwardFilterAlgorithm() to help the choice of the
algorithm used for the backward filter convolution.

Values

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 20

CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE

In this configuration, the routine
cudnnGetConvolutionBackwardFilterAlgorithm() is guaranteed to return an
algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST

In this configuration, the routine
cudnnGetConvolutionBackwardFilterAlgorithm() will return the fastest
algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine
cudnnGetConvolutionBackwardFilterAlgorithm() will return the fastest
algorithm that fits within the memory limit that the user provided.

3.25. cudnnConvolutionBwdFilterAlgo_t
cudnnConvolutionBwdFilterAlgo_t is an enumerated type that exposes the different
algorithms available to execute the backward filter convolution operation.

Values
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

This algorithm expresses the convolution as a sum of matrix product without actually
explicitly form the matrix that holds the input tensor data. The sum is done using
atomic adds operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data. The results are
deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution.
Significant workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

This algorithm is similar to CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 but uses
some small workspace to precomputes some indices. The results are also non-
deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution.
Significant workspace may be needed to store intermediate results. The results are
deterministic.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 21

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING

This algorithm uses the Fast-Fourier Transform approach to compute the convolution
but splits the input tensor into tiles. Significant workspace may be needed to store
intermediate results. The results are deterministic.

3.26. cudnnConvolutionBwdFilterAlgoPerf_t
cudnnConvolutionBwdFilterAlgoPerf_t is a
structure containing performance results returned by
cudnnFindConvolutionBackwardFilterAlgorithm() or heuristic results returned
by cudnnGetConvolutionBackwardFilterAlgorithm_v7().

Data Members
cudnnConvolutionBwdFilterAlgo_t algo

The algorithm run to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionBackwardFilter(), this status will represent
that error. Otherwise, this status will be the return status of
cudnnConvolutionBackwardFilter().

‣ CUDNN_STATUS_ALLOC_FAILED if any error occured during workspace allocation
or if provided workspace is insufficient.

‣ CUDNN_STATUS_INTERNAL_ERROR if any error occured during timing
calculations or workspace deallocation.

‣ Otherwise, this will be the return status of
cudnnConvolutionBackwardFilter().

float time

The execution time of cudnnConvolutionBackwardFilter() (in milliseconds).
size_t memory

The workspace size (in bytes).
cudnnDeterminism_t determinism

The determinism of the algorithm.
cudnnMathType_t mathType

The math type provided to the algorithm.
int reserved[3]

Reserved space for future properties.

3.27. cudnnConvolutionBwdDataPreference_t

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 22

cudnnConvolutionBwdDataPreference_t is an enumerated type used by
cudnnGetConvolutionBackwardDataAlgorithm() to help the choice of the
algorithm used for the backward data convolution.

Values
CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE

In this configuration, the routine
cudnnGetConvolutionBackwardDataAlgorithm() is guaranteed to return an
algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST

In this configuration, the routine
cudnnGetConvolutionBackwardDataAlgorithm() will return the fastest
algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine
cudnnGetConvolutionBackwardDataAlgorithm() will return the fastest
algorithm that fits within the memory limit that the user provided.

3.28. cudnnConvolutionBwdDataAlgo_t
cudnnConvolutionBwdDataAlgo_t is an enumerated type that exposes the different
algorithms available to execute the backward data convolution operation.

Values
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0

This algorithm expresses the convolution as a sum of matrix product without actually
explicitly form the matrix that holds the input tensor data. The sum is done using
atomic adds operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data. The results are
deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT

This algorithm uses a Fast-Fourier Transform approach to compute the convolution.
A significant memory workspace is needed to store intermediate results. The results
are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into
tiles. A significant memory workspace is needed to store intermediate results but less
than CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT for large size images. The
results are deterministic.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 23

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution.
A reasonably sized workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution.
Significant workspace may be needed to store intermediate results. The results are
deterministic.

3.29. cudnnConvolutionBwdDataAlgoPerf_t
cudnnConvolutionBwdDataAlgoPerf_t is a structure containing performance results
returned by cudnnFindConvolutionBackwardDataAlgorithm() or heuristic results
returned by cudnnGetConvolutionBackwardDataAlgorithm_v7().

Data Members
cudnnConvolutionBwdDataAlgo_t algo

The algorithm run to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionBackwardData(), this status will represent
that error. Otherwise, this status will be the return status of
cudnnConvolutionBackwardData().

‣ CUDNN_STATUS_ALLOC_FAILED if any error occured during workspace allocation
or if provided workspace is insufficient.

‣ CUDNN_STATUS_INTERNAL_ERROR if any error occured during timing
calculations or workspace deallocation.

‣ Otherwise, this will be the return status of
cudnnConvolutionBackwardData().

float time

The execution time of cudnnConvolutionBackwardData() (in milliseconds).
size_t memory

The workspace size (in bytes).
cudnnDeterminism_t determinism

The determinism of the algorithm.
cudnnMathType_t mathType

The math type provided to the algorithm.
int reserved[3]

Reserved space for future properties.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 24

3.30. cudnnSoftmaxAlgorithm_t
cudnnSoftmaxAlgorithm_t is used to select an implementation of the softmax
function used in cudnnSoftmaxForward() and cudnnSoftmaxBackward().

Values
CUDNN_SOFTMAX_FAST

This implementation applies the straightforward softmax operation.
CUDNN_SOFTMAX_ACCURATE

This implementation scales each point of the softmax input domain by its maximum
value to avoid potential floating point overflows in the softmax evaluation.

CUDNN_SOFTMAX_LOG

This entry performs the Log softmax operation, avoiding overflows by scaling each
point in the input domain as in CUDNN_SOFTMAX_ACCURATE

3.31. cudnnSoftmaxMode_t
cudnnSoftmaxMode_t is used to select over which data the cudnnSoftmaxForward()
and cudnnSoftmaxBackward() are computing their results.

Values
CUDNN_SOFTMAX_MODE_INSTANCE

The softmax operation is computed per image (N) across the dimensions C,H,W.
CUDNN_SOFTMAX_MODE_CHANNEL

The softmax operation is computed per spatial location (H,W) per image (N) across
the dimension C.

3.32. cudnnPoolingMode_t
cudnnPoolingMode_t is an enumerated type passed to
cudnnSetPoolingDescriptor() to select the pooling method to be used by
cudnnPoolingForward() and cudnnPoolingBackward().

Values
CUDNN_POOLING_MAX

The maximum value inside the pooling window is used.
CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING

Values inside the pooling window are averaged. The number of elements used to
calculate the average includes spatial locations falling in the padding region.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 25

CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING

Values inside the pooling window are averaged. The number of elements used to
calculate the average excludes spatial locations falling in the padding region.

CUDNN_POOLING_MAX_DETERMINISTIC

The maximum value inside the pooling window is used. The algorithm used is
deterministic.

3.33. cudnnActivationMode_t
cudnnActivationMode_t is an enumerated type used to select the neuron activation
function used in cudnnActivationForward() and cudnnActivationBackward().

Values
CUDNN_ACTIVATION_SIGMOID

Selects the sigmoid function.
CUDNN_ACTIVATION_RELU

Selects the rectified linear function.
CUDNN_ACTIVATION_TANH

Selects the hyperbolic tangent function.
CUDNN_ACTIVATION_CLIPPED_RELU

Selects the clipped rectified linear function
CUDNN_ACTIVATION_ELU

Selects the exponential linear function

3.34. cudnnLRNMode_t
cudnnLRNMode_t is an enumerated type used to specify the mode of operation in
cudnnLRNCrossChannelForward() and cudnnLRNCrossChannelBackward().

Values
CUDNN_LRN_CROSS_CHANNEL_DIM1

LRN computation is performed across tensor's dimension dimA[1].

3.35. cudnnDivNormMode_t
cudnnDivNormMode_t is an enumerated type used to specify the
mode of operation in cudnnDivisiveNormalizationForward() and
cudnnDivisiveNormalizationBackward().

Values

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 26

CUDNN_DIVNORM_PRECOMPUTED_MEANS

The means tensor data pointer is expected to contain means or other kernel
convolution values precomputed by the user. The means pointer can also be
NULL, in that case it's considered to be filled with zeroes. This is equivalent to
spatial LRN. Note that in the backward pass the means are treated as independent
inputs and the gradient over means is computed independently. In this mode to
yield a net gradient over the entire LCN computational graph the destDiffMeans
result should be backpropagated through the user's means layer (which can be
impelemented using average pooling) and added to the destDiffData tensor
produced by cudnnDivisiveNormalizationBackward.

3.36. cudnnBatchNormMode_t
cudnnBatchNormMode_t is an enumerated type used to specify the mode
of operation in cudnnBatchNormalizationForwardInference(),
cudnnBatchNormalizationForwardTraining(),
cudnnBatchNormalizationBackward() and cudnnDeriveBNTensorDescriptor()
routines.

Values
CUDNN_BATCHNORM_PER_ACTIVATION

Normalization is performed per-activation. This mode is intended to be used
after non-convolutional network layers. In this mode bnBias and bnScale tensor
dimensions are 1xCxHxW.

CUDNN_BATCHNORM_SPATIAL

Normalization is performed over N+spatial dimensions. This mode is intended for
use after convolutional layers (where spatial invariance is desired). In this mode
bnBias, bnScale tensor dimensions are 1xCx1x1.

CUDNN_BATCHNORM_SPATIAL_PERSISTENT

This mode is similar to CUDNN_BATCHNORM_SPATIAL but it
can be faster for some tasks. An optimized path may be selected for
CUDNN_DATA_FLOAT and CUDNN_DATA_HALF data types,
compute capability 6.0 or higher, and the following two batch
normalization API calls: cudnnBatchNormalizationForwardTraining,
and cudnnBatchNormalizationBackward. In the latter case savedMean
and savedInvVariance arguments should not be NULL. The
CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode may use scaled atomic
integer reduction that is deterministic but imposes some restrictions on the input
data range. When a numerical overflow occurs, a NaN (not-a-number) floating point
value is written to the output buffer. The user can invoke cudnnQueryRuntimeError
to check if a numerical overflow occurred in this mode.

3.37. cudnnRNNDescriptor_t

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 27

cudnnRNNDescriptor_t is a pointer to an opaque structure holding the description of
an RNN operation. cudnnCreateRNNDescriptor() is used to create one instance, and
cudnnSetRNNDescriptor() must be used to initialize this instance.

3.38. cudnnPersistentRNNPlan_t
cudnnPersistentRNNPlan_t is a pointer to an opaque structure holding a plan to
execute a dynamic persistent RNN. cudnnCreatePersistentRNNPlan() is used to
create and initialize one instance.

3.39. cudnnRNNMode_t
cudnnRNNMode_t is an enumerated type used to specify the type of network
used in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values
CUDNN_RNN_RELU

A single-gate recurrent neural network with a ReLU activation function.

In the forward pass the output ht for a given iteration can be computed from the
recurrent input ht-1 and the previous layer input xt given matrices W, R and biases
bW, bR from the following equation:

ht = ReLU(Wixt + Riht-1 + bWi + bRi)

Where ReLU(x) = max(x, 0).
CUDNN_RNN_TANH

A single-gate recurrent neural network with a tanh activation function.

In the forward pass the output ht for a given iteration can be computed from the
recurrent input ht-1 and the previous layer input xt given matrices W, R and biases
bW, bR from the following equation:

ht = tanh(Wixt + Riht-1 + bWi + bRi)

Where tanh is the hyperbolic tangent function.
CUDNN_LSTM

A four-gate Long Short-Term Memory network with no peephole connections.

In the forward pass the output ht and cell output ct for a given iteration can be
computed from the recurrent input ht-1, the cell input ct-1 and the previous layer
input xt given matrices W, R and biases bW, bR from the following equations:

it = σ(Wixt + Riht-1 + bWi + bRi)
ft = σ(Wfxt + Rfht-1 + bWf + bRf)
ot = σ(Woxt + Roht-1 + bWo + bRo)

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 28

c't = tanh(Wcxt + Rcht-1 + bWc + bRc)
ct = ft◦ct-1 + it◦c't
ht = ot◦tanh(ct)

Where σ is the sigmoid operator: σ(x) = 1 / (1 + e-x), ◦ represents a point-
wise multiplication and tanh is the hyperbolic tangent function. it, ft, ot, c't
represent the input, forget, output and new gates respectively.

CUDNN_GRU

A three-gate network consisting of Gated Recurrent Units.

In the forward pass the output ht for a given iteration can be computed from the
recurrent input ht-1 and the previous layer input xt given matrices W, R and biases
bW, bR from the following equations:

it = σ(Wixt + Riht-1 + bWi + bRu)
rt = σ(Wrxt + Rrht-1 + bWr + bRr)
h't = tanh(Whxt + rt◦(Rhht-1 + bRh) + bWh)
ht = (1 - it)◦h't + it◦ht-1

Where σ is the sigmoid operator: σ(x) = 1 / (1 + e-x), ◦ represents a point-wise
multiplication and tanh is the hyperbolic tangent function. it, rt, h't represent
the input, reset, new gates respectively.

3.40. cudnnDirectionMode_t
cudnnDirectionMode_t is an enumerated type used to specify the recurrence
pattern in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values
CUDNN_UNIDIRECTIONAL

The network iterates recurrently from the first input to the last.
CUDNN_BIDIRECTIONAL

Each layer of the the network iterates recurrently from the first input to the last and
separately from the last input to the first. The outputs of the two are concatenated at
each iteration giving the output of the layer.

3.41. cudnnRNNInputMode_t
cudnnRNNInputMode_t is an enumerated type used to specify the behavior of the
first layer in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values
CUDNN_LINEAR_INPUT

A biased matrix multiplication is performed at the input of the first recurrent layer.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 29

CUDNN_SKIP_INPUT
No operation is performed at the input of the first recurrent layer. If
CUDNN_SKIP_INPUT is used the leading dimension of the input tensor must be equal
to the hidden state size of the network.

3.42. cudnnRNNAlgo_t
cudnnRNNAlgo_t is an enumerated type used to specify the algorithm used
in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values
CUDNN_RNN_ALGO_STANDARD

Each RNN layer is executed as a sequence of operations. This algorithm is expected to
have robust performance across a wide range of network parameters.

CUDNN_RNN_ALGO_PERSIST_STATIC

The recurrent parts of the network are executed using a persistent kernel approach.
This method is expected to be fast when the first dimension of the input tensor is
small (ie. a small minibatch).

CUDNN_RNN_ALGO_PERSIST_STATIC is only supported on devices with compute
capability >= 6.0.

CUDNN_RNN_ALGO_PERSIST_DYNAMIC

The recurrent parts of the network are executed using a persistent kernel approach.
This method is expected to be fast when the first dimension of the input tensor is
small (ie. a small minibatch). When using CUDNN_RNN_ALGO_PERSIST_DYNAMIC
persistent kernels are prepared at runtime and are able to optimized using
the specific parameters of the network and active GPU. As such, when using
CUDNN_RNN_ALGO_PERSIST_DYNAMIC a one-time plan preparation stage must be
executed. These plans can then be reused in repeated calls with the same model
parameters.

The limits on the maximum number of hidden units supported when using
CUDNN_RNN_ALGO_PERSIST_DYNAMIC are significantly higher than the limits
when using CUDNN_RNN_ALGO_PERSIST_STATIC, however throughput is
likely to significantly reduce when exceeding the maximums supported by
CUDNN_RNN_ALGO_PERSIST_STATIC. In this regime this method will still outperform
CUDNN_RNN_ALGO_STANDARD for some cases.

CUDNN_RNN_ALGO_PERSIST_DYNAMIC is only supported on devices with compute
capability >= 6.0 on Linux machines.

3.43. cudnnCTCLossAlgo_t
cudnnCTCLossAlgo_t is an enumerated type that exposes the different algorithms
available to execute the CTC loss operation.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 30

Values
CUDNN_CTC_LOSS_ALGO_DETERMINISTIC

Results are guaranteed to be reproducible
CUDNN_CTC_LOSS_ALGO_NON_DETERMINISTIC

Results are not guaranteed to be reproducible

3.44. cudnnDropoutDescriptor_t
cudnnDropoutDescriptor_t is a pointer to an opaque structure holding the
description of a dropout operation. cudnnCreateDropoutDescriptor() is used
to create one instance, cudnnSetDropoutDescriptor() is used to initialize this
instance, cudnnDestroyDropoutDescriptor() is used to destroy this instance,
cudnnGetDropoutDescriptor() is used to query fields of a previously initialized
instance, cudnnRestoreDropoutDescriptor() is used to restore an instance to a
previously saved off state.

3.45. cudnnSpatialTransformerDescriptor_t
cudnnSpatialTransformerDescriptor_t is a pointer to an opaque
structure holding the description of a spatial transformation operation.
cudnnCreateSpatialTransformerDescriptor() is used to create one instance,
cudnnSetSpatialTransformerNdDescriptor() is used to initialize this instance,
cudnnDestroySpatialTransformerDescriptor() is used to destroy this instance.

3.46. cudnnSamplerType_t
cudnnSamplerType_t is an enumerated type passed to
cudnnSetSpatialTransformerNdDescriptor() to select the sampler type to be used
by cudnnSpatialTfSamplerForward() and cudnnSpatialTfSamplerBackward().

Values
CUDNN_SAMPLER_BILINEAR

Selects the bilinear sampler.

3.47. cudnnErrQueryMode_t
cudnnErrQueryMode_t is an enumerated type passed to cudnnQueryRuntimeError()
to select the remote kernel error query mode.

Values
CUDNN_ERRQUERY_RAWCODE

Read the error storage location regardless of the kernel completion status.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 31

CUDNN_ERRQUERY_NONBLOCKING
Report if all tasks in the user stream of the cuDNN handle were completed. If that is
the case, report the remote kernel error code.

CUDNN_ERRQUERY_BLOCKING
Wait for all tasks to complete in the user stream before reporting the remote kernel
error code.

www.nvidia.com
cuDNN DU-06702-001_v07 | 32

Chapter 4.
CUDNN API REFERENCE

This chapter describes the API of all the routines of the cuDNN library.

4.1. cudnnGetVersion
size_t cudnnGetVersion()

This function returns the version number of the cuDNN Library. It returns the
CUDNN_VERSION define present in the cudnn.h header file. Starting with release R2, the
routine can be used to identify dynamically the current cuDNN Library used by the
application. The define CUDNN_VERSION can be used to have the same application linked
against different cuDNN versions using conditional compilation statements.

4.2. cudnnGetCudartVersion
size_t cudnnGetCudartVersion()

The same version of a given cuDNN library can be compiled against different CUDA
Toolkit versions. This routine returns the CUDA Toolkit version that the currently used
cuDNN library has been compiled against.

4.3. cudnnGetProperty
cudnnStatus_t cudnnGetProperty(
 libraryPropertyType type,
 int *value)

This function writes a specific part of the cuDNN library version number into the
provided host storage.

Parameters
type

Input. Enumerated type that instructs the function to report the numerical value of
the cuDNN major version, minor version, or the patch level.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 33

value

Output. Host pointer where the version information should be written.

Returns
CUDNN_STATUS_INVALID_VALUE

Invalid value of the type argument.
CUDNN_STATUS_SUCCESS

Version information was stored successfully at the provided address.

4.4. cudnnGetErrorString
const char * cudnnGetErrorString(cudnnStatus_t status)

This function converts the cuDNN status code to a NUL terminated (ASCIIZ) static
string. For example, when the input argument is CUDNN_STATUS_SUCCESS, the
returned string is "CUDNN_STATUS_SUCCESS". When an invalid status value is passed
to the function, the returned string is "CUDNN_UNKNOWN_STATUS".

Parameters
status

Input. cuDNN enumerated status code.

Returns

Pointer to a static, NUL terminated string with the status name.

4.5. cudnnQueryRuntimeError
cudnnStatus_t cudnnQueryRuntimeError(
 cudnnHandle_t handle,
 cudnnStatus_t *rstatus,
 cudnnErrQueryMode_t mode,
 cudnnRuntimeTag_t *tag)

cuDNN library functions perform extensive input argument checking before launching
GPU kernels. The last step is to verify that the GPU kernel actually started. When
a kernel fails to start, CUDNN_STATUS_EXECUTION_FAILED is returned by the
corresponding API call. Typically, after a GPU kernel starts, no runtime checks are
performed by the kernel itself -- numerical results are simply written to output buffers.

When the CUDNN_BATCHNORM_SPATIAL_PERSISTENT
mode is selected in cudnnBatchNormalizationForwardTraining or
cudnnBatchNormalizationBackward, the algorithm may encounter numerical overflows
where CUDNN_BATCHNORM_SPATIAL performs just fine albeit at a slower speed.
The user can invoke cudnnQueryRuntimeError to make sure numerical overflows did
not occur during the kernel execution. Those issues are reported by the kernel that
performs computations.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 34

cudnnQueryRuntimeError can be used in polling and blocking software control
flows. There are two polling modes (CUDNN_ERRQUERY_RAWCODE,
CUDNN_ERRQUERY_NONBLOCKING) and one blocking mode
CUDNN_ERRQUERY_BLOCKING.

CUDNN_ERRQUERY_RAWCODE reads the error storage location regardless of the
kernel completion status. The kernel might not even started and the error storage
(allocated per cuDNN handle) might be used by an earlier call.

CUDNN_ERRQUERY_NONBLOCKING checks if all tasks in the user stream
completed. The cudnnQueryRuntimeError function will return immediately and report
CUDNN_STATUS_RUNTIME_IN_PROGRESS in 'rstatus' if some tasks in the user
stream are pending. Otherwise, the function will copy the remote kernel error code to
'rstatus'.

In the blocking mode (CUDNN_ERRQUERY_BLOCKING), the function
waits for all tasks to drain in the user stream before reporting the remote
kernel error code. The blocking flavor can be further adjusted by calling
cudaSetDeviceFlags with the cudaDeviceScheduleSpin, cudaDeviceScheduleYield, or
cudaDeviceScheduleBlockingSync flag.

CUDNN_ERRQUERY_NONBLOCKING and CUDNN_ERRQUERY_BLOCKING
modes should not be used when the user stream is changed in the cuDNN handle, i.e.,
cudnnSetStream is invoked between functions that report runtime kernel errors and the
cudnnQueryRuntimeError function.

The remote error status reported in rstatus can be set to:
CUDNN_STATUS_SUCCESS, CUDNN_STATUS_RUNTIME_IN_PROGRESS,
or CUDNN_STATUS_RUNTIME_FP_OVERFLOW. The remote kernel error is
automatically cleared by cudnnQueryRuntimeError.

The cudnnQueryRuntimeError function should be used in
conjunction with cudnnBatchNormalizationForwardTraining and
cudnnBatchNormalizationBackward when the cudnnBatchNormMode_t argument is
CUDNN_BATCHNORM_SPATIAL_PERSISTENT.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rstatus

Output. Pointer to the user's error code storage.
mode

Input. Remote error query mode.
tag

Input/Output. Currently, this argument should be NULL.

The possible error values returned by this function and their meanings are listed below.

Returns

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 35

CUDNN_STATUS_SUCCESS

No errors detected (rstatus holds a valid value).
CUDNN_STATUS_BAD_PARAM

Invalid input argument.
CUDNN_STATUS_INTERNAL_ERROR

A stream blocking synchronization or a non-blocking stream query failed.
CUDNN_STATUS_MAPPING_ERROR

Device cannot access zero-copy memory to report kernel errors.

4.6. cudnnCreate
cudnnStatus_t cudnnCreate(cudnnHandle_t *handle)

This function initializes the cuDNN library and creates a handle to an opaque
structure holding the cuDNN library context. It allocates hardware resources on the
host and device and must be called prior to making any other cuDNN library calls.
The cuDNN library handle is tied to the current CUDA device (context). To use the
library on multiple devices, one cuDNN handle needs to be created for each device.
For a given device, multiple cuDNN handles with different configurations (e.g.,
different current CUDA streams) may be created. Because cudnnCreate allocates
some internal resources, the release of those resources by calling cudnnDestroy will
implicitly call cudaDeviceSynchronize; therefore, the recommended best practice
is to call cudnnCreate/cudnnDestroy outside of performance-critical code paths.
For multithreaded applications that use the same device from different threads, the
recommended programming model is to create one (or a few, as is convenient) cuDNN
handle(s) per thread and use that cuDNN handle for the entire life of the thread.

Parameters
handle

Output. Pointer to pointer where to store the address to the allocated cuDNN handle.

Returns
CUDNN_STATUS_BAD_PARAM

Invalid (NULL) input pointer supplied.
CUDNN_STATUS_NOT_INITIALIZED

No compatible GPU found, CUDA driver not installed or disabled, CUDA runtime
API initialization failed.

CUDNN_STATUS_ARCH_MISMATCH

NVIDIA GPU architecture is too old.
CUDNN_STATUS_ALLOC_FAILED

Host memory allocation failed.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 36

CUDNN_STATUS_INTERNAL_ERROR

CUDA resource allocation failed.
CUDNN_STATUS_LICENSE_ERROR

cuDNN license validation failed (only when the feature is enabled).
CUDNN_STATUS_SUCCESS

cuDNN handle was created successfully.

4.7. cudnnDestroy
cudnnStatus_t cudnnDestroy(cudnnHandle_t handle)

This function releases resources used by the cuDNN handle. This function is usually the
last call with a particular handle to the cuDNN handle. Because cudnnCreate allocates
some internal resources, the release of those resources by calling cudnnDestroy will
implicitly call cudaDeviceSynchronize; therefore, the recommended best practice is to
call cudnnCreate/cudnnDestroy outside of performance-critical code paths.

Parameters
handle

Input. Pointer to the cuDNN handle to be destroyed.

Returns
CUDNN_STATUS_SUCCESS

The cuDNN context destruction was successful.
CUDNN_STATUS_BAD_PARAM

Invalid (NULL) pointer supplied.

4.8. cudnnSetStream
cudnnStatus_t cudnnSetStream(
 cudnnHandle_t handle,
 cudaStream_t streamId)

This function sets the user's CUDA stream in the cuDNN handle. The new stream will
be used to launch cuDNN GPU kernels or to synchronize to this stream when cuDNN
kernels are launched in the internal streams. If the cuDNN library stream is not set, all
kernels use the default (NULL) stream. Setting the user stream in the cuDNN handle
guarantees the issue-order execution of cuDNN calls and other GPU kernels launched in
the same stream.

Parameters
handle

Input. Pointer to the cuDNN handle.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 37

streamID

Input. New CUDA stream to be written to the cuDNN handle.

Returns
CUDNN_STATUS_BAD_PARAM

Invalid (NULL) handle.
CUDNN_STATUS_MAPPING_ERROR

Mismatch between the user stream and the cuDNN handle context.
CUDNN_STATUS_SUCCESS

The new stream was set successfully.

4.9. cudnnGetStream
cudnnStatus_t cudnnGetStream(
 cudnnHandle_t handle,
 cudaStream_t *streamId)

This function retrieves the user CUDA stream programmed in the cuDNN handle.
When the user's CUDA stream was not set in the cuDNN handle, this function reports
the null-stream.

Parameters
handle

Input. Pointer to the cuDNN handle.
streamID

Output. Pointer where the current CUDA stream from the cuDNN handle should be
stored.

Returns
CUDNN_STATUS_BAD_PARAM

Invalid (NULL) handle.
CUDNN_STATUS_SUCCESS

The stream identifier was retrieved successfully.

4.10. cudnnCreateTensorDescriptor
cudnnStatus_t cudnnCreateTensorDescriptor(
 cudnnTensorDescriptor_t *tensorDesc)

This function creates a generic tensor descriptor object by allocating the memory needed
to hold its opaque structure. The data is initialized to be all zero.

Parameters

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 38

tensorDesc

Input. Pointer to pointer where the address to the allocated tensor descriptor object
should be stored.

Returns
CUDNN_STATUS_BAD_PARAM

Invalid input argument.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.
CUDNN_STATUS_SUCCESS

The object was created successfully.

4.11. cudnnSetTensor4dDescriptor
cudnnStatus_t cudnnSetTensor4dDescriptor(
 cudnnTensorDescriptor_t tensorDesc,
 cudnnTensorFormat_t format,
 cudnnDataType_t dataType,
 int n,
 int c,
 int h,
 int w)

This function initializes a previously created generic Tensor descriptor object into a
4D tensor. The strides of the four dimensions are inferred from the format parameter
and set in such a way that the data is contiguous in memory with no padding between
dimensions.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.
format

Input. Type of format.
datatype

Input. Data type.
n

Input. Number of images.
c

Input. Number of feature maps per image.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 39

h

Input. Height of each feature map.
w

Input. Width of each feature map.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the parameters n,c,h,w was negative or format has an invalid
enumerant value or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximim limit of 2 Giga-elements.

4.12. cudnnSetTensor4dDescriptorEx
cudnnStatus_t cudnnSetTensor4dDescriptorEx(
 cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t dataType,
 int n,
 int c,
 int h,
 int w,
 int nStride,
 int cStride,
 int hStride,
 int wStride)

This function initializes a previously created generic Tensor descriptor object into a
4D tensor, similarly to cudnnSetTensor4dDescriptor but with the strides explicitly
passed as parameters. This can be used to lay out the 4D tensor in any order or simply to
define gaps between dimensions.

At present, some cuDNN routines have limited support for strides; Those routines will
return CUDNN_STATUS_NOT_SUPPORTED if a Tensor4D object with an unsupported
stride is used. cudnnTransformTensor can be used to convert the data to a
supported layout.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 40

datatype

Input. Data type.
n

Input. Number of images.
c

Input. Number of feature maps per image.
h

Input. Height of each feature map.
w

Input. Width of each feature map.
nStride

Input. Stride between two consecutive images.
cStride

Input. Stride between two consecutive feature maps.
hStride

Input. Stride between two consecutive rows.
wStride

Input. Stride between two consecutive columns.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the parameters n,c,h,w or nStride,cStride,hStride,wStride is
negative or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximim limit of 2 Giga-elements.

4.13. cudnnGetTensor4dDescriptor
cudnnStatus_t cudnnGetTensor4dDescriptor(
 const cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t *dataType,
 int *n,
 int *c,
 int *h,
 int *w,
 int *nStride,
 int *cStride,
 int *hStride,
 int *wStride)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 41

This function queries the parameters of the previouly initialized Tensor4D descriptor
object.

Parameters
tensorDesc

Input. Handle to a previously insitialized tensor descriptor.
datatype

Output. Data type.
n

Output. Number of images.
c

Output. Number of feature maps per image.
h

Output. Height of each feature map.
w

Output. Width of each feature map.
nStride

Output. Stride between two consecutive images.
cStride

Output. Stride between two consecutive feature maps.
hStride

Output. Stride between two consecutive rows.
wStride

Output. Stride between two consecutive columns.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The operation succeeded.

4.14. cudnnSetTensorNdDescriptor
cudnnStatus_t cudnnSetTensorNdDescriptor(
 cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t dataType,
 int nbDims,
 const int dimA[],
 const int strideA[])

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 42

This function initializes a previously created generic Tensor descriptor object.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype. Tensors are restricted to having at least
4 dimensions, and at most CUDNN_DIM_MAX dimensions (defined in cudnn.h). When
working with lower dimensional data, it is recommended that the user create a 4D
tensor, and set the size along unused dimensions to 1.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.
datatype

Input. Data type.
nbDims

Input. Dimension of the tensor.
dimA

Input. Array of dimension nbDims that contain the size of the tensor for every
dimension. Size along unused dimensions should be set to 1.

strideA

Input. Array of dimension nbDims that contain the stride of the tensor for every
dimension.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the elements of the array dimA was negative or zero, or dataType has
an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The parameter nbDims is outside the range [4, CUDNN_DIM_MAX], or the total size
of the tensor descriptor exceeds the maximim limit of 2 Giga-elements.

4.15. cudnnGetTensorNdDescriptor
cudnnStatus_t cudnnGetTensorNdDescriptor(
 const cudnnTensorDescriptor_t tensorDesc,
 int nbDimsRequested,
 cudnnDataType_t *dataType,
 int *nbDims,
 int dimA[],
 int strideA[])

This function retrieves values stored in a previously initialized Tensor descriptor object.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 43

Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.
nbDimsRequested

Input. Number of dimensions to extract from a given tensor descriptor. It is also the
minimum size of the arrays dimA and strideA. If this number is greater than the
resulting nbDims[0], only nbDims[0] dimensions will be returned.

datatype

Output. Data type.
nbDims

Output. Actual number of dimensions of the tensor will be returned in nbDims[0].
dimA

Output. Array of dimension of at least nbDimsRequested that will be filled with the
dimensions from the provided tensor descriptor.

strideA

Input. Array of dimension of at least nbDimsRequested that will be filled with the
strides from the provided tensor descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The results were returned successfully.
CUDNN_STATUS_BAD_PARAM

Either tensorDesc or nbDims pointer is NULL.

4.16. cudnnGetTensorSizeInBytes
cudnnStatus_t cudnnGetTensorSizeInBytes(
 const cudnnTensorDescriptor_t tensorDesc,
 size_t *size)

This function returns the size of the tensor in memory in respect to the given descriptor.
This function can be used to know the amount of GPU memory to be allocated to hold
that tensor.

Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.
size

Output. Size in bytes needed to hold the tensor in GPU memory.

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 44

Returns
CUDNN_STATUS_SUCCESS

The results were returned successfully.

4.17. cudnnDestroyTensorDescriptor
cudnnStatus_t cudnnDestroyTensorDescriptor(cudnnTensorDescriptor_t tensorDesc)

This function destroys a previously created tensor descriptor object. When the input
pointer is NULL, this function performs no destroy operation.

Parameters
tensorDesc

Input. Pointer to the tensor descriptor object to be destroyed.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.18. cudnnTransformTensor
cudnnStatus_t cudnnTransformTensor(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This function copies the scaled data from one tensor to another tensor with a different
layout. Those descriptors need to have the same dimensions but not necessarily the
same strides. The input and output tensors must not overlap in any way (i.e., tensors
cannot be transformed in place). This function can be used to convert a tensor with an
unsupported format to a supported one.

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value
with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to a previously initialized tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 45

x

Input. Pointer to data of the tensor described by the xDesc descriptor.
yDesc

Input. Handle to a previously initialized tensor descriptor.
y

Output. Pointer to data of the tensor described by the yDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

The dimensions n,c,h,w or the dataType of the two tensor descriptors are different.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.19. cudnnAddTensor
cudnnStatus_t cudnnAddTensor(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t aDesc,
 const void *A,
 const void *beta,
 const cudnnTensorDescriptor_t cDesc,
 void *C)

This function adds the scaled values of a bias tensor to another tensor. Each dimension
of the bias tensor A must match the corresponding dimension of the destination tensor
C or must be equal to 1. In the latter case, the same value from the bias tensor for those
dimensions will be used to blend into the C tensor.

Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value
with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue +
beta[0]*priorDstValue. Please refer to this section for additional details.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 46

aDesc

Input. Handle to a previously initialized tensor descriptor.
A

Input. Pointer to data of the tensor described by the aDesc descriptor.
cDesc

Input. Handle to a previously initialized tensor descriptor.
C

Input/Output. Pointer to data of the tensor described by the cDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function executed successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

The dimensions of the bias tensor refer to an amount of data that is incompatible the
output tensor dimensions or the dataType of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.20. cudnnOpTensor
cudnnStatus_t cudnnOpTensor(
 cudnnHandle_t handle,
 const cudnnOpTensorDescriptor_t opTensorDesc,
 const void *alpha1,
 const cudnnTensorDescriptor_t aDesc,
 const void *A,
 const void *alpha2,
 const cudnnTensorDescriptor_t bDesc,
 const void *B,
 const void *beta,
 const cudnnTensorDescriptor_t cDesc,
 void *C)

This function implements the equation C = op (alpha1[0] * A, alpha2[0] * B) + beta[0] *
C, given tensors A, B, and C and scaling factors alpha1, alpha2, and beta. The op to use
is indicated by the descriptor opTensorDesc. Currently-supported ops are listed by the
cudnnOpTensorOp_t enum.

Each dimension of the input tensor A must match the corresponding dimension of
the destination tensor C, and each dimension of the input tensor B must match the
corresponding dimension of the destination tensor C or must be equal to 1. In the latter
case, the same value from the input tensor B for those dimensions will be used to blend
into the C tensor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 47

The data types of the input tensors A and B must match. If the data type of the
destination tensor C is double, then the data type of the input tensors also must be
double.

If the data type of the destination tensor C is double, then opTensorCompType in
opTensorDesc must be double. Else opTensorCompType must be float.

If the input tensor B is the same tensor as the destination tensor C, then the input tensor
A also must be the same tensor as the destination tensor C.

Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Parameters
handle

Input. Handle to a previously created cuDNN context.
opTensorDesc

Input. Handle to a previously initialized op tensor descriptor.
alpha1, alpha2, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with
prior value in the destination tensor as indicated by the above op equation. Please
refer to this section for additional details.

aDesc, bDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.
A, B

Input. Pointer to data of the tensors described by the aDesc and bDesc descriptors,
respectively.

C

Input/Output. Pointer to data of the tensor described by the cDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function executed successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The dimensions of the bias tensor and the output tensor dimensions are above 5.
‣ opTensorCompType is not set as stated above.

CUDNN_STATUS_BAD_PARAM

The data type of the destination tensor C is unrecognized or the conditions in the
above paragraphs are unmet.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 48

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.21. cudnnReduceTensor
cudnnStatus_t cudnnReduceTensor(
 cudnnHandle_t handle,
 const cudnnReduceTensorDescriptor_t reduceTensorDesc,
 void *indices,
 size_t indicesSizeInBytes,
 void *workspace,
 size_t workspaceSizeInBytes,
 const void *alpha,
 const cudnnTensorDescriptor_t aDesc,
 const void *A,
 const void *beta,
 const cudnnTensorDescriptor_t cDesc,
 void *C)

This function reduces tensor A by implementing the equation C = alpha * reduce op (A)
+ beta * C, given tensors A and C and scaling factors alpha and beta. The reduction op
to use is indicated by the descriptor reduceTensorDesc. Currently-supported ops are
listed by the cudnnReduceTensorOp_t enum.

Each dimension of the output tensor C must match the corresponding dimension of the
input tensor A or must be equal to 1. The dimensions equal to 1 indicate the dimensions
of A to be reduced.

The implementation will generate indices for the min and max ops only, as indicated
by the cudnnReduceTensorIndices_t enum of the reduceTensorDesc. Requesting
indices for the other reduction ops results in an error. The data type of the indices is
indicated by the cudnnIndicesType_t enum; currently only the 32-bit (unsigned int)
type is supported.

The indices returned by the implementation are not absolute indices but relative to the
dimensions being reduced. The indices are also flattened, i.e. not coordinate tuples.

The data types of the tensors A and C must match if of type double. In this case, alpha
and beta and the computation enum of reduceTensorDesc are all assumed to be of
type double.

The half and int8 data types may be mixed with the float data types. In these cases, the
computation enum of reduceTensorDesc is required to be of type float.

Up to dimension 8, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Parameters
handle

Input. Handle to a previously created cuDNN context.
reduceTensorDesc

Input. Handle to a previously initialized reduce tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 49

indices

Output. Handle to a previously allocated space for writing indices.
indicesSizeInBytes

Input. Size of the above previously allocated space.
workspace

Input. Handle to a previously allocated space for the reduction implementation.
workspaceSizeInBytes

Input. Size of the above previously allocated space.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with
prior value in the destination tensor as indicated by the above op equation. Please
refer to this section for additional details.

aDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.
A

Input. Pointer to data of the tensor described by the aDesc descriptor.
C

Input/Output. Pointer to data of the tensor described by the cDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function executed successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The dimensions of the input tensor and the output tensor are above 8.
‣ reduceTensorCompType is not set as stated above.

CUDNN_STATUS_BAD_PARAM

The corresponding dimensions of the input and output tensors all match, or the
conditions in the above paragraphs are unmet.

CUDNN_INVALID_VALUE

The allocations for the indices or workspace are insufficient.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 50

4.22. cudnnSetTensor
cudnnStatus_t cudnnSetTensor(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const void *valuePtr)

This function sets all the elements of a tensor to a given value.

Parameters
handle

Input. Handle to a previously created cuDNN context.
yDesc

Input. Handle to a previously initialized tensor descriptor.
y

Input/Output. Pointer to data of the tensor described by the yDesc descriptor.
valuePtr

Input. Pointer in Host memory to a single value. All elements of the y tensor will be
set to value[0]. The data type of the element in value[0] has to match the data type of
tensor y.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

one of the provided pointers is nil
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.23. cudnnScaleTensor
cudnnStatus_t cudnnScaleTensor(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const void *alpha)

This function scale all the elements of a tensor by a given factor.

Parameters

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 51

handle

Input. Handle to a previously created cuDNN context.
yDesc

Input. Handle to a previously initialized tensor descriptor.
y

Input/Output. Pointer to data of the tensor described by the yDesc descriptor.
alpha

Input. Pointer in Host memory to a single value that all elements of the tensor will be
scaled with. Please refer to this section for additional details.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

one of the provided pointers is nil
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.24. cudnnCreateFilterDescriptor
cudnnStatus_t cudnnCreateFilterDescriptor(
 cudnnFilterDescriptor_t *filterDesc)

This function creates a filter descriptor object by allocating the memory needed to hold
its opaque structure,

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.25. cudnnSetFilter4dDescriptor
cudnnStatus_t cudnnSetFilter4dDescriptor(
 cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 cudnnTensorFormat_t format,
 int k,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 52

 int c,
 int h,
 int w)

This function initializes a previously created filter descriptor object into a 4D filter.
Filters layout must be contiguous in memory.

Tensor format CUDNN_TENSOR_NHWC has limited support in
cudnnConvolutionForward, cudnnConvolutionBackwardData and
cudnnConvolutionBackwardFilter; please refer to each function's documentation for
more information.

Parameters
filterDesc

Input/Output. Handle to a previously created filter descriptor.
datatype

Input. Data type.
format

Input. Type of format.
k

Input. Number of output feature maps.
c

Input. Number of input feature maps.
h

Input. Height of each filter.
w

Input. Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the parameters k,c,h,w is negative or dataType or format has an
invalid enumerant value.

4.26. cudnnGetFilter4dDescriptor
cudnnStatus_t cudnnGetFilter4dDescriptor(
 const cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t *dataType,
 cudnnTensorFormat_t *format,
 int *k,
 int *c,
 int *h,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 53

 int *w)

This function queries the parameters of the previouly initialized filter descriptor object.

Parameters
filterDesc

Input. Handle to a previously created filter descriptor.
datatype

Output. Data type.
format

Output. Type of format.
k

Output. Number of output feature maps.
c

Output. Number of input feature maps.
h

Output. Height of each filter.
w

Output. Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

4.27. cudnnSetFilterNdDescriptor
cudnnStatus_t cudnnSetFilterNdDescriptor(
 cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 cudnnTensorFormat_t format,
 int nbDims,
 const int filterDimA[])

This function initializes a previously created filter descriptor object. Filters layout must
be contiguous in memory.

Tensor format CUDNN_TENSOR_NHWC has limited support in
cudnnConvolutionForward, cudnnConvolutionBackwardData and
cudnnConvolutionBackwardFilter; please refer to each function's documentation for
more information.

Parameters
filterDesc

Input/Output. Handle to a previously created filter descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 54

datatype

Input. Data type.
format

Input. Type of format.
nbDims

Input. Dimension of the filter.
filterDimA

Input. Array of dimension nbDims containing the size of the filter for each dimension.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the elements of the array filterDimA is negative or dataType or
format has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

the parameter nbDims exceeds CUDNN_DIM_MAX.

4.28. cudnnGetFilterNdDescriptor
cudnnStatus_t cudnnGetFilterNdDescriptor(
 const cudnnFilterDescriptor_t wDesc,
 int nbDimsRequested,
 cudnnDataType_t *dataType,
 cudnnTensorFormat_t *format,
 int *nbDims,
 int filterDimA[])

This function queries a previously initialized filter descriptor object.

Parameters
wDesc

Input. Handle to a previously initialized filter descriptor.
nbDimsRequested

Input. Dimension of the expected filter descriptor. It is also the minimum size of the
arrays filterDimA in order to be able to hold the results

datatype

Output. Data type.
format

Output. Type of format.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 55

nbDims

Output. Actual dimension of the filter.
filterDimA

Output. Array of dimension of at least nbDimsRequested that will be filled with the
filter parameters from the provided filter descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

The parameter nbDimsRequested is negative.

4.29. cudnnDestroyFilterDescriptor
cudnnStatus_t cudnnDestroyFilterDescriptor(
 cudnnFilterDescriptor_t filterDesc)

This function destroys a previously created Tensor4D descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.30. cudnnCreateConvolutionDescriptor
cudnnStatus_t cudnnCreateConvolutionDescriptor(
 cudnnConvolutionDescriptor_t *convDesc)

This function creates a convolution descriptor object by allocating the memory needed to
hold its opaque structure,

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.31. cudnnSetConvolutionMathType
cudnnStatus_t cudnnSetConvolutionMathType(
 cudnnConvolutionDescriptor_t convDesc,
 cudnnMathType_t mathType)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 56

This function allows the user to specify whether or not the use of tensor op is permitted
in library routines associated with a given convolution descriptor.

Returns
CUDNN_STATUS_SUCCESS

The math type was was set successfully.
CUDNN_STATUS_BAD_PARAM

Either an invalid convolution descriptor was provided or an invalid math type was
specified.

4.32. cudnnGetConvolutionMathType
cudnnStatus_t cudnnGetConvolutionMathType(
 cudnnConvolutionDescriptor_t convDesc,
 cudnnMathType_t *mathType)

This function returns the math type specified in a given convolution descriptor.

Returns
CUDNN_STATUS_SUCCESS

The math type was returned successfully.
CUDNN_STATUS_BAD_PARAM

An invalid convolution descriptor was provided.

4.33. cudnnSetConvolutionGroupCount
cudnnStatus_t cudnnSetConvolutionGroupCount(
 cudnnConvolutionDescriptor_t convDesc,
 int groupCount)

This function allows the user to specify the number of groups to be used in the
associated convolution.

Returns
CUDNN_STATUS_SUCCESS

The group count was set successfully.
CUDNN_STATUS_BAD_PARAM

An invalid convolution descriptor was provided

4.34. cudnnGetConvolutionGroupCount
cudnnStatus_t cudnnGetConvolutionGroupCount(
 cudnnConvolutionDescriptor_t convDesc,
 int *groupCount)

This function returns the group count specified in the given convolution descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 57

Returns
CUDNN_STATUS_SUCCESS

The group count was returned successfully.
CUDNN_STATUS_BAD_PARAM

An invalid convolution descriptor was provided.

4.35. cudnnSetConvolution2dDescriptor
cudnnStatus_t cudnnSetConvolution2dDescriptor(
 cudnnConvolutionDescriptor_t convDesc,
 int pad_h,
 int pad_w,
 int u,
 int v,
 int dilation_h,
 int dilation_w,
 cudnnConvolutionMode_t mode,
 cudnnDataType_t computeType)

This function initializes a previously created convolution descriptor object into a 2D
correlation. This function assumes that the tensor and filter descriptors corresponds
to the formard convolution path and checks if their settings are valid. That same
convolution descriptor can be reused in the backward path provided it corresponds to
the same layer.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
pad_h

Input. zero-padding height: number of rows of zeros implicitly concatenated onto the
top and onto the bottom of input images.

pad_w

Input. zero-padding width: number of columns of zeros implicitly concatenated onto
the left and onto the right of input images.

u

Input. Vertical filter stride.
v

Input. Horizontal filter stride.
dilation_h

Input. Filter height dilation.
dilation_w

Input. Filter width dilation.
mode

Input. Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 58

computeType

Input. compute precision.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor convDesc is nil.
‣ One of the parameters pad_h,pad_w is strictly negative.
‣ One of the parameters u,v is negative or zero.
‣ One of the parameters dilation_h,dilation_w is negative or zero.
‣ The parameter mode has an invalid enumerant value.

4.36. cudnnGetConvolution2dDescriptor
cudnnStatus_t cudnnGetConvolution2dDescriptor(
 const cudnnConvolutionDescriptor_t convDesc,
 int *pad_h,
 int *pad_w,
 int *u,
 int *v,
 int *dilation_h,
 int *dilation_w,
 cudnnConvolutionMode_t *mode,
 cudnnDataType_t *computeType)

This function queries a previously initialized 2D convolution descriptor object.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
pad_h

Output. zero-padding height: number of rows of zeros implicitly concatenated onto
the top and onto the bottom of input images.

pad_w

Output. zero-padding width: number of columns of zeros implicitly concatenated
onto the left and onto the right of input images.

u

Output. Vertical filter stride.
v

Output. Horizontal filter stride.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 59

dilation_h

Output. Filter height dilation.
dilation_w

Output. Filter width dilation.
mode

Output. Convolution mode.
computeType

Output. Compute precision.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The operation was successful.
CUDNN_STATUS_BAD_PARAM

The parameter convDesc is nil.

4.37. cudnnGetConvolution2dForwardOutputDim
cudnnStatus_t cudnnGetConvolution2dForwardOutputDim(
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t inputTensorDesc,
 const cudnnFilterDescriptor_t filterDesc,
 int *n,
 int *c,
 int *h,
 int *w)

This function returns the dimensions of the resulting 4D tensor of a 2D convolution,
given the convolution descriptor, the input tensor descriptor and the filter descriptor
This function can help to setup the output tensor and allocate the proper amount of
memory prior to launch the actual convolution.

Each dimension h and w of the output images is computed as followed:

 outputDim = 1 + (inputDim + 2*pad - (((filterDim-1)*dilation)+1))/
convolutionStride;

The dimensions provided by this routine must be strictly respected when calling
cudnnConvolutionForward() or cudnnConvolutionBackwardBias(). Providing a
smaller or larger output tensor is not supported by the convolution routines.

Parameters
convDesc

Input. Handle to a previously created convolution descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 60

inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.
filterDesc

Input. Handle to a previously initialized filter descriptor.
n

Output. Number of output images.
c

Output. Number of output feature maps per image.
h

Output. Height of each output feature map.
w

Output. Width of each output feature map.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_BAD_PARAM

One or more of the descriptors has not been created correctly or there is a mismatch
between the feature maps of inputTensorDesc and filterDesc.

CUDNN_STATUS_SUCCESS

The object was set successfully.

4.38. cudnnSetConvolutionNdDescriptor
cudnnStatus_t cudnnSetConvolutionNdDescriptor(
 cudnnConvolutionDescriptor_t convDesc,
 int arrayLength,
 const int padA[],
 const int filterStrideA[],
 const int dilationA[],
 cudnnConvolutionMode_t mode,
 cudnnDataType_t dataType)

This function initializes a previously created generic convolution descriptor object into
a n-D correlation. That same convolution descriptor can be reused in the backward path
provided it corresponds to the same layer. The convolution computation will done in the
specified dataType, which can be potentially different from the input/output tensors.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
arrayLength

Input. Dimension of the convolution.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 61

padA

Input. Array of dimension arrayLength containing the zero-padding size for
each dimension. For every dimension, the padding represents the number of extra
zeros implicitly concatenated at the start and at the end of every element of that
dimension .

filterStrideA

Input. Array of dimension arrayLength containing the filter stride for each
dimension. For every dimension, the fitler stride represents the number of elements
to slide to reach the next start of the filtering window of the next point.

dilationA

Input. Array of dimension arrayLength containing the dilation factor for each
dimension.

mode

Input. Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION.
datatype

Input. Selects the datatype in which the computation will be done.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor convDesc is nil.
‣ The arrayLengthRequest is negative.
‣ The enumerant mode has an invalid value.
‣ The enumerant datatype has an invalid value.
‣ One of the elements of padA is strictly negative.
‣ One of the elements of strideA is negative or zero.
‣ One of the elements of dilationA is negative or zero.

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:

‣ The arrayLengthRequest is greater than CUDNN_DIM_MAX.

4.39. cudnnGetConvolutionNdDescriptor
cudnnStatus_t cudnnGetConvolutionNdDescriptor(
 const cudnnConvolutionDescriptor_t convDesc,
 int arrayLengthRequested,
 int *arrayLength,
 int padA[],

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 62

 int filterStrideA[],
 int dilationA[],
 cudnnConvolutionMode_t *mode,
 cudnnDataType_t *dataType)

This function queries a previously initialized convolution descriptor object.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
arrayLengthRequested

Input. Dimension of the expected convolution descriptor. It is also the minimum size
of the arrays padA, filterStrideA and dilationA in order to be able to hold the
results

arrayLength

Output. Actual dimension of the convolution descriptor.
padA

Output. Array of dimension of at least arrayLengthRequested that will be filled
with the padding parameters from the provided convolution descriptor.

filterStrideA

Output. Array of dimension of at least arrayLengthRequested that will be filled
with the filter stride from the provided convolution descriptor.

dilationA

Output. Array of dimension of at least arrayLengthRequested that will be filled
with the dilation parameters from the provided convolution descriptor.

mode

Output. Convolution mode of the provided descriptor.
datatype

Output. datatype of the provided descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor convDesc is nil.
‣ The arrayLengthRequest is negative.

CUDNN_STATUS_NOT_SUPPORTED

The arrayLengthRequest is greater than CUDNN_DIM_MAX

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 63

4.40. cudnnGetConvolutionNdForwardOutputDim
cudnnStatus_t cudnnGetConvolutionNdForwardOutputDim(
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t inputTensorDesc,
 const cudnnFilterDescriptor_t filterDesc,
 int nbDims,
 int tensorOuputDimA[])

This function returns the dimensions of the resulting n-D tensor of a nbDims-2-D
convolution, given the convolution descriptor, the input tensor descriptor and the filter
descriptor This function can help to setup the output tensor and allocate the proper
amount of memory prior to launch the actual convolution.

Each dimension of the (nbDims-2)-D images of the output tensor is computed as
followed:

 outputDim = 1 + (inputDim + 2*pad - (((filterDim-1)*dilation)+1))/
convolutionStride;

The dimensions provided by this routine must be strictly respected when calling
cudnnConvolutionForward() or cudnnConvolutionBackwardBias(). Providing a
smaller or larger output tensor is not supported by the convolution routines.

Parameters
convDesc

Input. Handle to a previously created convolution descriptor.
inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.
filterDesc

Input. Handle to a previously initialized filter descriptor.
nbDims

Input. Dimension of the output tensor
tensorOuputDimA

Output. Array of dimensions nbDims that contains on exit of this routine the sizes of
the output tensor

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the parameters convDesc, inputTensorDesc, and filterDesc, is nil
‣ The dimension of the filter descriptor filterDesc is different from the

dimension of input tensor descriptor inputTensorDesc.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 64

‣ The dimension of the convolution descriptor is different from the dimension of
input tensor descriptor inputTensorDesc -2 .

‣ The features map of the filter descriptor filterDesc is different from the one of
input tensor descriptor inputTensorDesc.

‣ The size of the dilated filter filterDesc is larger than the padded sizes of the
input tensor.

‣ The dimension nbDims of the output array is negative or greater than the
dimension of input tensor descriptor inputTensorDesc.

CUDNN_STATUS_SUCCESS

The routine exits successfully.

4.41. cudnnDestroyConvolutionDescriptor
cudnnStatus_t cudnnDestroyConvolutionDescriptor(
 cudnnConvolutionDescriptor_t convDesc)

This function destroys a previously created convolution descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.42. cudnnFindConvolutionForwardAlgorithm
cudnnStatus_t cudnnFindConvolutionForwardAlgorithm(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionFwdAlgoPerf_t *perfResults)

This function attempts all cuDNN algorithms for cudnnConvolutionForward(),
using memory allocated via cudaMalloc(), and outputs performance metrics to a user-
allocated array of cudnnConvolutionFwdAlgoPerf_t. These metrics are written in
sorted fashion where the first element has the lowest compute time.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Parameters

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 65

handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
wDesc

Input. Handle to a previously initialized filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ xDesc, wDesc or yDesc is not allocated properly.
‣ xDesc, wDesc or yDesc has fewer than 1 dimension.
‣ Either returnedCount or perfResults is nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

‣ The function was unable to allocate neccesary timing objects.
‣ The function was unable to deallocate neccesary timing objects.
‣ The function was unable to deallocate sample input, filters and output.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 66

4.43. cudnnFindConvolutionForwardAlgorithmEx
cudnnStatus_t cudnnFindConvolutionForwardAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionFwdAlgoPerf_t *perfResults,
 void *workSpace,
 size_t workSpaceSizeInBytes)

This function attempts all available cuDNN algorithms for
cudnnConvolutionForward, using user-allocated GPU memory, and outputs
performance metrics to a user-allocated array of cudnnConvolutionFwdAlgoPerf_t.
These metrics are written in sorted fashion where the first element has the lowest
compute time.

This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc

Input. Handle to a previously initialized filter descriptor.
w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
y

Input/Output. Data pointer to GPU memory associated with the tensor descriptor
yDesc. The content of this tensor will be overwritten with arbitary values.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 67

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

workSpace

Input. Data pointer to GPU memory that is a necessary workspace for some
algorithms. The size of this workspace will determine the availability of algorithms. A
nil pointer is considered a workSpace of 0 bytes.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ xDesc, wDesc or yDesc is not allocated properly.
‣ xDesc, wDesc or yDesc has fewer than 1 dimension.
‣ x, w or y is nil.
‣ Either returnedCount or perfResults is nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

‣ The function was unable to allocate neccesary timing objects.
‣ The function was unable to deallocate neccesary timing objects.
‣ The function was unable to deallocate sample input, filters and output.

4.44. cudnnGetConvolutionForwardAlgorithm
cudnnStatus_t cudnnGetConvolutionForwardAlgorithm(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 cudnnConvolutionFwdPreference_t preference,
 size_t memoryLimitInBytes,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 68

 cudnnConvolutionFwdAlgo_t *algo)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionForward for the given layer specifications. Based on the input
preference, this function will either return the fastest algorithm or the fastest algorithm
within a given memory limit. For an exhaustive search for the fastest algorithm, please
use cudnnFindConvolutionForwardAlgorithm.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
wDesc

Input. Handle to a previously initialized convolution filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
preference

Input. Enumerant to express the preference criteria in terms of memory requirement
and speed.

memoryLimitInBytes

Input. It is used when enumerant preference is set to
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT to specify the maximum
amount of GPU memory the user is willing to use as a workspace

algo

Output. Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the parameters handle, xDesc, wDesc, convDesc, yDesc is NULL.
‣ Either yDesc or wDesc have different dimensions from xDesc.
‣ The data types of tensors xDesc, yDesc or wDesc are not all the same.
‣ The number of feature maps in xDesc and wDesc differs.
‣ The tensor xDesc has a dimension smaller than 3.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 69

4.45. cudnnGetConvolutionForwardAlgorithm_v7
cudnnStatus_t cudnnGetConvolutionForwardAlgorithm_v7(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionFwdAlgoPerf_t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionForward for the given layer specifications. This function will return
all algorithms sorted by expected (based on internal heuristic) relative performance with
fastest being index 0 of perfResults. For an exhaustive search for the fastest algorithm,
please use cudnnFindConvolutionForwardAlgorithm.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
wDesc

Input. Handle to a previously initialized convolution filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 70

‣ One of the parameters handle, xDesc, wDesc, convDesc, yDesc, perfResults,
returnedAlgoCount is NULL.

‣ Either yDesc or wDesc have different dimensions from xDesc.
‣ The data types of tensors xDesc, yDesc or wDesc are not all the same.
‣ The number of feature maps in xDesc and wDesc differs.
‣ The tensor xDesc has a dimension smaller than 3.
‣ requestedAlgoCount is less than or equal to 0.

4.46. cudnnGetConvolutionForwardWorkspaceSize
cudnnStatus_t cudnnGetConvolutionForwardWorkspaceSize(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 cudnnConvolutionFwdAlgo_t algo,
 size_t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs
to allocate to be able to call cudnnConvolutionForward with the specified
algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionForward. The specified algorithm can be the result of the call to
cudnnGetConvolutionForwardAlgorithm or can be chosen arbitrarily by the user.
Note that not every algorithm is available for every configuration of the input tensor
and/or every configuration of the convolution descriptor.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized x tensor descriptor.
wDesc

Input. Handle to a previously initialized filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized y tensor descriptor.
algo

Input. Enumerant that specifies the chosen convolution algorithm
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a
forward convolution with the specified algo

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 71

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the parameters handle, xDesc, wDesc, convDesc, yDesc is NULL.
‣ The tensor yDesc or wDesc are not of the same dimension as xDesc.
‣ The tensor xDesc, yDesc or wDesc are not of the same data type.
‣ The numbers of feature maps of the tensor xDesc and wDesc differ.
‣ The tensor xDesc has a dimension smaller than 3.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution
descriptor is not supported for the specified algorithm.

4.47. cudnnConvolutionForward
cudnnStatus_t cudnnConvolutionForward(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionFwdAlgo_t algo,
 void *workSpace,
 size_t workSpaceSizeInBytes,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This function executes convolutions or cross-correlations over x using filters specified
with w, returning results in y. Scaling factors alpha and beta can be used to scale the
input tensor and the output tensor respectively.

The routine cudnnGetConvolution2dForwardOutputDim or
cudnnGetConvolutionNdForwardOutputDim can be used to determine the proper
dimensions of the output tensor descriptor yDesc with respect to xDesc, convDesc
and wDesc.

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 72

xDesc

Input. Handle to a previously initialized tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc

Input. Handle to a previously initialized filter descriptor.
w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
convDesc

Input. Previously initialized convolution descriptor.
algo

Input. Enumerant that specifies which convolution algorithm shoud be used to
compute the results.

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer
can be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace.
yDesc

Input. Handle to a previously initialized tensor descriptor.
y

Input/Output. Data pointer to GPU memory associated with the tensor descriptor
yDesc that carries the result of the convolution.

This function supports only eight specific combinations of data types for xDesc, wDesc,
convDesc and yDesc. See the following for an exhaustive list of these configurations.

Data Type
Configurations xDesc and wDesc convDesc yDesc

TRUE_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_HALF CUDNN_DATA_HALF

PSEUDO_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_FLOAT CUDNN_DATA_HALF

FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

DOUBLE_CONFIG CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

INT8_CONFIG CUDNN_DATA_INT8 CUDNN_DATA_INT32 CUDNN_DATA_INT8

INT8_EXT_CONFIG CUDNN_DATA_INT8 CUDNN_DATA_INT32 CUDNN_DATA_FLOAT

INT8x4_CONFIG CUDNN_DATA_INT8x4 CUDNN_DATA_INT32 CUDNN_DATA_INT8x4

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 73

Data Type
Configurations xDesc and wDesc convDesc yDesc

INT8x4_EXT_CONFIG CUDNN_DATA_INT8x4 CUDNN_DATA_INT32 CUDNN_DATA_FLOAT

TRUE_HALF_CONFIG is only supported on architectures with true fp16 support
(compute capability 5.3 and 6.0).

INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only
supported on architectures with DP4A support (compute capability 6.1 and later).

For this function, all algorithms perform deterministic computations. Specifying a
separate algorithm can cause changes in performance and support.

For the datatype configurations TRUE_HALF_CONFIG, PSEUDO_HALF_CONFIG,
FLOAT_CONFIG and DOUBLE_CONFIG, when the filter descriptor wDesc is in
CUDNN_TENSOR_NCHW format the following is the exhaustive list of algo supported
for 2-d convolutions.

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

‣ xDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: greater than 0 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

‣ xDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ Data Type Config Support: All
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_FWD_ALGO_GEMM

‣ xDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.

‣ CUDNN_CONVOLUTION_FWD_ALGO_DIRECT

‣ This algorithm has no current implementation in cuDNN.
‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT

‣ xDesc Format Support: NCHW HW-packed
‣ yDesc Format Support: NCHW HW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Dilation: 1 for all dimensions

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 74

‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ xDesc's feature map height + 2 * convDesc's zero-padding height must
equal 256 or less

‣ xDesc's feature map width + 2 * convDesc's zero-padding width must
equal 256 or less

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING

‣ xDesc Format Support: NCHW HW-packed
‣ yDesc Format Support: NCHW HW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG

(DOUBLE_CONFIG is also supported when the task can be handled by 1D FFT,
ie, one of the filter dimension, width or height is 1)

‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ when neither of wDesc's filter dimension is 1, the filter width and height
must not be larger than 32

‣ when either of wDesc's filter dimension is 1, the largest filter dimension
should not exceed 256

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD

‣ xDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be 3
‣ wDesc's filter width must be 3

‣ CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

‣ xDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ Data Type Config Support: All except DOUBLE_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 75

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter (height, width) must be (3,3) or (5,5)
‣ If wDesc's filter (height, width) is (5,5), data type config

TRUE_HALF_CONFIG is not supported

For the datatype configurations TRUE_HALF_CONFIG, PSEUDO_HALF_CONFIG,
FLOAT_CONFIG and DOUBLE_CONFIG, when the filter descriptor
wDesc is in CUDNN_TENSOR_NHWC format the only algo supported is
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM with the following
conditions :

‣ xDesc and yDesc is NHWC HWC-packed
‣ Data type configuration is PSEUDO_HALF_CONFIG or FLOAT_CONFIG
‣ The convolution is 2-dimensional
‣ Dilation is 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.

For the datatype configurations TRUE_HALF_CONFIG, PSEUDO_HALF_CONFIG,
FLOAT_CONFIG and DOUBLE_CONFIG, when the filter descriptor wDesc is in
CUDNN_TENSOR_NCHW format the following is the exhaustive list of algo supported
for 3-d convolutions.

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

‣ xDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: greater than 0 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

‣ xDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING

‣ xDesc Format Support: NCDHW DHW-packed
‣ yDesc Format Support: NCDHW DHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ wDesc's filter height must equal 16 or less
‣ wDesc's filter width must equal 16 or less
‣ wDesc's filter depth must equal 16 or less
‣ convDesc's must have all filter strides equal to 1

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 76

‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width
‣ wDesc's filter depth must be greater than convDesc's zero-padding width

For the datatype configurations INT8_CONFIG and INT8_EXT_CONFIG, the only algo
supported is CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
with the following conditions :

‣ xDesc Format Support: CUDNN_TENSOR_NHWC
‣ yDesc Format Support: CUDNN_TENSOR_NHWC
‣ Input and output features maps must be multiple of 4
‣ wDesc Format Support: CUDNN_TENSOR_NHWC
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

For the datatype configurations INT8x4_CONFIG and
INT8x4_EXT_CONFIG, the only algo supported is
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM with the
following conditions :

‣ xDesc Format Support: CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: CUDNN_TENSOR_NCHW when dataype is

CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW_VECT_C when datatype is
CUDNN_DATA_INT8x4

‣ Input and output features maps must be multiple of 4
‣ wDesc Format Support: CUDNN_TENSOR_NCHW_VECT_C
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

Tensors can be converted to/from CUDNN_TENSOR_NCHW_VECT_C with
cudnnTransformTensor().

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ At least one of the following is NULL: handle, xDesc, wDesc, convDesc, yDesc,
xData, w, yData, alpha, beta

‣ xDesc and yDesc have a non-matching number of dimensions
‣ xDesc and wDesc have a non-matching number of dimensions
‣ xDesc has fewer than three number of dimensions
‣ xDesc's number of dimensions is not equal to convDesc's array length + 2
‣ xDesc and wDesc have a non-matching number of input feature maps per image

(or group in case of Grouped Convolutions)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 77

‣ yDesc or wDesc indicate an output channel count that isn't a multiple of group
count (if group count has been set in convDesc).

‣ xDesc, wDesc and yDesc have a non-matching data type
‣ For some spatial dimension, wDesc has a spatial size that is larger than the input

spatial size (including zero-padding size)

CUDNN_STATUS_NOT_SUPPORTED
At least one of the following conditions are met:

‣ xDesc or yDesc have negative tensor striding
‣ xDesc, wDesc or yDesc has a number of dimensions that is not 4 or 5
‣ yDescs's spatial sizes do not match with the expected size as determined by

cudnnGetConvolutionNdForwardOutputDim
‣ The chosen algo does not support the parameters provided; see above for

exhaustive list of parameter support for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occured during the texture binding of the filter data.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.48. cudnnConvolutionBiasActivationForward
cudnnStatus_t cudnnConvolutionBiasActivationForward(
 cudnnHandle_t handle,
 const void *alpha1,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionFwdAlgo_t algo,
 void *workSpace,
 size_t workSpaceSizeInBytes,
 const void *alpha2,
 const cudnnTensorDescriptor_t zDesc,
 const void *z,
 const cudnnTensorDescriptor_t biasDesc,
 const void *bias,
 const cudnnActivationDescriptor_t activationDesc,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This function applies a bias and then an activation to the convolutions or cross-
correlations of cudnnConvolutionForward(), returning results in y. The full computation
follows the equation y = act (alpha1 * conv(x) + alpha2 * z + bias).

The routine cudnnGetConvolution2dForwardOutputDim or
cudnnGetConvolutionNdForwardOutputDim can be used to determine the proper
dimensions of the output tensor descriptor yDesc with respect to xDesc, convDesc
and wDesc.

Parameters

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 78

handle

Input. Handle to a previously created cuDNN context.
alpha1, alpha2

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as described by the above equation. Please
refer to this section for additional details.

xDesc

Input. Handle to a previously initialized tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc

Input. Handle to a previously initialized filter descriptor.
w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
convDesc

Input. Previously initialized convolution descriptor.
algo

Input. Enumerant that specifies which convolution algorithm shoud be used to
compute the results

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer
can be nil

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace.
zDesc

Input. Handle to a previously initialized tensor descriptor.
z

Input. Data pointer to GPU memory associated with the tensor descriptor zDesc.
biasDesc

Input. Handle to a previously initialized tensor descriptor.
bias

Input. Data pointer to GPU memory associated with the tensor descriptor biasDesc.
activationDesc

Input. Handle to a previously initialized activation descriptor.
yDesc

Input. Handle to a previously initialized tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 79

y

Input/Output. Data pointer to GPU memory associated with the tensor descriptor
yDesc that carries the result of the convolution.

For the convolution step, this function supports the specific combinations of data
types for xDesc, wDesc, convDesc and yDesc as listed in the documentation of
cudnnConvolutionForward(). The below table specifies the supported combinations of
data types for x, y, z, bias, and alpha1/alpha2.

x y and z bias alpha1/alpha2

CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

CUDNN_DATA_HALF CUDNN_DATA_HALF CUDNN_DATA_HALF CUDNN_DATA_FLOAT

CUDNN_DATA_INT8 CUDNN_DATA_INT8 CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

CUDNN_DATA_INT8 CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

CUDNN_DATA_INT8x4 CUDNN_DATA_INT8x4 CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

CUDNN_DATA_INT8x4 CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

In addition to the error values listed by the documentation of
cudnnConvolutionForward(), the possible error values returned by this function and
their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ At least one of the following is NULL: zDesc, zData, biasDesc, bias,
activationDesc

‣ The second dimension of biasDesc and the first dimension of filterDesc are
not equal

‣ zDesc and destDesc do not match

CUDNN_STATUS_NOT_SUPPORTED
The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The mode of activationDesc is not CUDNN_ACTIVATION_RELU
‣ The reluNanOpt of activationDesc is not CUDNN_NOT_PROPAGATE_NAN
‣ The second stride of biasDesc is not equal to one.
‣ The data type of biasDesc does not correspond to the data type of yDesc as

listed in the above data types table.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 80

4.49. cudnnConvolutionBackwardBias
cudnnStatus_t cudnnConvolutionBackwardBias(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const void *beta,
 const cudnnTensorDescriptor_t dbDesc,
 void *db)

This function computes the convolution function gradient with respect to the bias, which
is the sum of every element belonging to the same feature map across all of the images of
the input tensor. Therefore, the number of elements produced is equal to the number of
features maps of the input tensor.

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

dyDesc

Input. Handle to the previously initialized input tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
dbDesc

Input. Handle to the previously initialized output tensor descriptor.
db

Output. Data pointer to GPU memory associated with the output tensor descriptor
dbDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the parameters n,height,width of the output tensor is not 1.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 81

‣ The numbers of feature maps of the input tensor and output tensor differ.
‣ The dataType of the two tensor descriptors are different.

4.50. cudnnFindConvolutionBackwardFilterAlgorithm
cudnnStatus_t cudnnFindConvolutionBackwardFilterAlgorithm(
cudnnHandle_t handle,
const cudnnTensorDescriptor_t xDesc,
const cudnnTensorDescriptor_t dyDesc,
const cudnnConvolutionDescriptor_t convDesc,
const cudnnFilterDescriptor_t dwDesc,
const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults)

This function attempts all cuDNN algorithms for
cudnnConvolutionBackwardFilter(), using GPU memory allocated via
cudaMalloc(), and outputs performance metrics to a user-allocated array of
cudnnConvolutionBwdFilterAlgoPerf_t. These metrics are written in sorted
fashion where the first element has the lowest compute time.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 82

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ xDesc, dyDesc or dwDesc is not allocated properly.
‣ xDesc, dyDesc or dwDesc has fewer than 1 dimension.
‣ Either returnedCount or perfResults is nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

‣ The function was unable to allocate neccesary timing objects.
‣ The function was unable to deallocate neccesary timing objects.
‣ The function was unable to deallocate sample input, filters and output.

4.51. cudnnFindConvolutionBackwardFilterAlgorithmEx
cudnnStatus_t cudnnFindConvolutionBackwardFilterAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdFilterAlgoPerf_t *perfResults,
 void *workSpace,
 size_t workSpaceSizeInBytes)

This function attempts all cuDNN algorithms for cudnnConvolutionBackwardFilter,
using user-allocated GPU memory, and outputs performance metrics to a user-allocated

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 83

array of cudnnConvolutionBwdFilterAlgoPerf_t. These metrics are written in
sorted fashion where the first element has the lowest compute time.

This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
x

Input. Data pointer to GPU memory associated with the filter descriptor xDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor
dwDesc. The content of this tensor will be overwritten with arbitary values.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

workSpace

Input. Data pointer to GPU memory that is a necessary workspace for some
algorithms. The size of this workspace will determine the availabilty of algorithms. A
nil pointer is considered a workSpace of 0 bytes.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 84

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ xDesc, dyDesc or dwDesc is not allocated properly.
‣ xDesc, dyDesc or dwDesc has fewer than 1 dimension.
‣ x, dy or dw is nil.
‣ Either returnedCount or perfResults is nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

‣ The function was unable to allocate neccesary timing objects.
‣ The function was unable to deallocate neccesary timing objects.
‣ The function was unable to deallocate sample input, filters and output.

4.52. cudnnGetConvolutionBackwardFilterAlgorithm
cudnnStatus_t cudnnGetConvolutionBackwardFilterAlgorithm(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t dwDesc,
 cudnnConvolutionBwdFilterPreference_t preference,
 size_t memoryLimitInBytes,
 cudnnConvolutionBwdFilterAlgo_t *algo)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardFilter for the given layer specifications. Based on
the input preference, this function will either return the fastest algorithm or the
fastest algorithm within a given memory limit. For an exhaustive search for the fastest
algorithm, please use cudnnFindConvolutionBackwardFilterAlgorithm.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 85

dwDesc

Input. Handle to a previously initialized filter descriptor.
preference

Input. Enumerant to express the preference criteria in terms of memory requirement
and speed.

memoryLimitInBytes

Input. It is to specify the maximum amount of GPU memory the user is willing to use
as a workspace. This is currently a placeholder and is not used.

algo

Output. Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The numbers of feature maps of the input tensor and output tensor differ.
‣ The dataType of the two tensor descriptors or the filter are different.

4.53. cudnnGetConvolutionBackwardFilterAlgorithm_v7
cudnnStatus_t cudnnGetConvolutionBackwardFilterAlgorithm_v7(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t dwDesc,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdFilterAlgoPerf_t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardFilter for the given layer specifications. This function
will return all algorithms sorted by expected (based on internal heuristic) relative
performance with fastest being index 0 of perfResults. For an exhaustive search for the
fastest algorithm, please use cudnnFindConvolutionBackwardFilterAlgorithm.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 86

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the parameters handle, xDesc, dyDesc, convDesc, dwDesc, perfResults,
returnedAlgoCount is NULL.

‣ The numbers of feature maps of the input tensor and output tensor differ.
‣ The dataType of the two tensor descriptors or the filter are different.
‣ requestedAlgoCount is less than or equal to 0.

4.54. cudnnGetConvolutionBackwardFilterWorkspaceSize
cudnnStatus_t cudnnGetConvolutionBackwardFilterWorkspaceSize(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t dwDesc,
 cudnnConvolutionBwdFilterAlgo_t algo,
 size_t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs
to allocate to be able to call cudnnConvolutionBackwardFilter with the
specified algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionBackwardFilter. The specified algorithm can be the result of the
call to cudnnGetConvolutionBackwardFilterAlgorithm or can be chosen arbitrarily
by the user. Note that not every algorithm is available for every configuration of the
input tensor and/or every configuration of the convolution descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 87

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
algo

Input. Enumerant that specifies the chosen convolution algorithm.
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a
forward convolution with the specified algo.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The numbers of feature maps of the input tensor and output tensor differ.
‣ The dataType of the two tensor descriptors or the filter are different.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution
descriptor is not supported for the specified algorithm.

4.55. cudnnConvolutionBackwardFilter
cudnnStatus_t cudnnConvolutionBackwardFilter(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionBwdFilterAlgo_t algo,
 void *workSpace,
 size_t workSpaceSizeInBytes,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 88

 const void *beta,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw)

This function computes the convolution gradient with respect to filter coefficients using
the specified algo, returning results in gradDesc.Scaling factors alpha and beta can be
used to scale the input tensor and the output tensor respectively.

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to a previously initialized tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the backpropagation gradient
tensor descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor.
algo

Input. Enumerant that specifies which convolution algorithm shoud be used to
compute the results

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer
can be nil

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace
dwDesc

Input. Handle to a previously initialized filter gradient descriptor.
dw

Input/Output. Data pointer to GPU memory associated with the filter gradient
descriptor dwDesc that carries the result.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 89

This function supports only three specific combinations of data types for xDesc,
dyDesc, convDesc and dwDesc. See the following for an exhaustive list of these
configurations.

Data Type Configurations
xDesc's, dyDesc's and
dwDesc's Data Type convDesc's Data Type

TRUE_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_HALF

PSEUDO_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_FLOAT

FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

DOUBLE_CONFIG CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following for an exhaustive list of algorithm options
and their respective supported parameters and deterministic behavior.

dwDesc may only have format CUDNN_TENSOR_NHWC when all of the following are
true:

‣ algo is CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 or
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ xDesc and dyDesc is NHWC HWC-packed
‣ Data type configuration is PSEUDO_HALF_CONFIG or FLOAT_CONFIG
‣ The convolution is 2-dimensional

The following is an exhaustive list of algo support for 2-d convolutions.

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ Deterministic: No
‣ xDesc Format Support: All except NCHW_VECT_C
‣ dyDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: greater than 0 for all dimensions
‣ convDesc Group Count Support: Greater than 0.
‣ Not supported if output is of type CUDNN_DATA_HALF and the number of

elements in dw is odd.
‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ Deterministic: Yes
‣ xDesc Format Support: All
‣ dyDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: All
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT

‣ Deterministic: Yes
‣ xDesc Format Support: NCHW CHW-packed
‣ dyDesc Format Support: NCHW CHW-packed

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 90

‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ convDesc Group Count Support: Equal to 1.
‣ Dilation: 1 for all dimensions
‣ Notes:

‣ xDesc's feature map height + 2 * convDesc's zero-padding height must
equal 256 or less

‣ xDesc's feature map width + 2 * convDesc's zero-padding width must
equal 256 or less

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ dwDesc's filter height must be greater than convDesc's zero-padding height
‣ dwDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

‣ Deterministic: No
‣ xDesc Format Support: All except NCHW_VECT_C
‣ dyDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ convDesc Group Count Support: Greater than 0.
‣ Dilation: 1 for all dimensions

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED

‣ Deterministic: Yes
‣ xDesc Format Support: All except CUDNN_TENSOR_NCHW_VECT_C
‣ yDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: All except DOUBLE_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter (height, width) must be (3,3) or (5,5)
‣ If wDesc's filter (height, width) is (5,5), data type config

TRUE_HALF_CONFIG is not supported
‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING

‣ Deterministic: Yes
‣ xDesc Format Support: NCHW CHW-packed
‣ dyDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG,

DOUBLE_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ xDesc's width or height must be equal to 1

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 91

‣ dyDesc's width or height must be equal to 1 (the same dimension as in
xDesc). The other dimension must be less than or equal to 256, ie, the
largest 1D tile size currently supported

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ dwDesc's filter height must be greater than convDesc's zero-padding height
‣ dwDesc's filter width must be greater than convDesc's zero-padding width

The following is an exhaustive list of algo support for 3-d convolutions.

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ Deterministic: No
‣ xDesc Format Support: All except NCHW_VECT_C
‣ dyDesc Format Support: NCDHW CDHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: greater than 0 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

‣ Deterministic: No
‣ xDesc Format Support: NCDHW-fully-packed
‣ dyDesc Format Support: NCDHW-fully-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ At least one of the following is NULL: handle, xDesc, dyDesc, convDesc,
dwDesc, xData, dyData, dwData, alpha, beta

‣ xDesc and dyDesc have a non-matching number of dimensions
‣ xDesc and dwDesc have a non-matching number of dimensions
‣ xDesc has fewer than three number of dimensions
‣ xDesc, dyDesc and dwDesc have a non-matching data type.
‣ xDesc and dwDesc have a non-matching number of input feature maps per

image (or group in case of Grouped Convolutions).
‣ yDesc or wDesc indicate an output channel count that isn't a multiple of group

count (if group count has been set in convDesc).

CUDNN_STATUS_NOT_SUPPORTED
At least one of the following conditions are met:

‣ xDesc or dyDesc have negative tensor striding

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 92

‣ xDesc, dyDesc or dwDesc has a number of dimensions that is not 4 or 5
‣ The chosen algo does not support the parameters provided; see above for

exhaustive list of parameter support for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture binding of the filter data.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.56. cudnnFindConvolutionBackwardDataAlgorithm
cudnnStatus_t cudnnFindConvolutionBackwardDataAlgorithm(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdDataAlgoPerf_t *perfResults)

This function attempts all cuDNN algorithms for cudnnConvolutionBackwardData(),
using memory allocated via cudaMalloc() and outputs performance metrics to a user-
allocated array of cudnnConvolutionBwdDataAlgoPerf_t. These metrics are written
in sorted fashion where the first element has the lowest compute time.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 93

returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ wDesc, dyDesc or dxDesc is not allocated properly.
‣ wDesc, dyDesc or dxDesc has fewer than 1 dimension.
‣ Either returnedCount or perfResults is nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

‣ The function was unable to allocate neccesary timing objects.
‣ The function was unable to deallocate neccesary timing objects.
‣ The function was unable to deallocate sample input, filters and output.

4.57. cudnnFindConvolutionBackwardDataAlgorithmEx
cudnnStatus_t cudnnFindConvolutionBackwardDataAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdDataAlgoPerf_t *perfResults,
 void *workSpace,
 size_t workSpaceSizeInBytes)

This function attempts all cuDNN algorithms for cudnnConvolutionBackwardData,
using user-allocated GPU memory, and outputs performance metrics to a user-allocated

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 94

array of cudnnConvolutionBwdDataAlgoPerf_t. These metrics are written in sorted
fashion where the first element has the lowest compute time.

This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.
w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the filter descriptor dyDesc.
convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
dxDesc

Input/Output. Data pointer to GPU memory associated with the tensor descriptor
dxDesc. The content of this tensor will be overwritten with arbitary values.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

workSpace

Input. Data pointer to GPU memory that is a necessary workspace for some
algorithms. The size of this workspace will determine the availabilty of algorithms. A
nil pointer is considered a workSpace of 0 bytes.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 95

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ wDesc, dyDesc or dxDesc is not allocated properly.
‣ wDesc, dyDesc or dxDesc has fewer than 1 dimension.
‣ w, dy or dx is nil.
‣ Either returnedCount or perfResults is nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

‣ The function was unable to allocate neccesary timing objects.
‣ The function was unable to deallocate neccesary timing objects.
‣ The function was unable to deallocate sample input, filters and output.

4.58. cudnnGetConvolutionBackwardDataAlgorithm
cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithm(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 cudnnConvolutionBwdDataPreference_t preference,
 size_t memoryLimitInBytes,
 cudnnConvolutionBwdDataAlgo_t *algo)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardData for the given layer specifications. Based on the
input preference, this function will either return the fastest algorithm or the fastest
algorithm within a given memory limit. For an exhaustive search for the fastest
algorithm, please use cudnnFindConvolutionBackwardDataAlgorithm.

Parameters
handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 96

dxDesc

Input. Handle to the previously initialized output tensor descriptor.
preference

Input. Enumerant to express the preference criteria in terms of memory requirement
and speed.

memoryLimitInBytes

Input. It is to specify the maximum amount of GPU memory the user is willing to use
as a workspace. This is currently a placeholder and is not used.

algo

Output. Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The numbers of feature maps of the input tensor and output tensor differ.
‣ The dataType of the two tensor descriptors or the filter are different.

4.59. cudnnGetConvolutionBackwardDataAlgorithm_v7
cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithm_v7(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdDataAlgoPerf_t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardData for the given layer specifications. This function
will return all algorithms sorted by expected (based on internal heuristic) relative
performance with fastest being index 0 of perfResults. For an exhaustive search for the
fastest algorithm, please use cudnnFindConvolutionBackwardDataAlgorithm.

Parameters
handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 97

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the parameters handle, wDesc, dyDesc, convDesc, dxDesc, perfResults,
returnedAlgoCount is NULL.

‣ The numbers of feature maps of the input tensor and output tensor differ.
‣ The dataType of the two tensor descriptors or the filter are different.
‣ requestedAlgoCount is less than or equal to 0.

4.60. cudnnGetConvolutionBackwardDataWorkspaceSize
cudnnStatus_t cudnnGetConvolutionBackwardDataWorkspaceSize(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 cudnnConvolutionBwdDataAlgo_t algo,
 size_t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs
to allocate to be able to call cudnnConvolutionBackwardData with the
specified algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionBackwardData. The specified algorithm can be the result of the call
to cudnnGetConvolutionBackwardDataAlgorithm or can be chosen arbitrarily by
the user. Note that not every algorithm is available for every configuration of the input
tensor and/or every configuration of the convolution descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 98

Parameters
handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
algo

Input. Enumerant that specifies the chosen convolution algorithm
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a
forward convolution with the specified algo

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The numbers of feature maps of the input tensor and output tensor differ.
‣ The dataType of the two tensor descriptors or the filter are different.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution
descriptor is not supported for the specified algorithm.

4.61. cudnnConvolutionBackwardData
cudnnStatus_t cudnnConvolutionBackwardData(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionBwdDataAlgo_t algo,
 void *workSpace,
 size_t workSpaceSizeInBytes,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 99

 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx)

This function computes the convolution gradient with respect to the output tensor using
the specified algo, returning results in gradDesc. Scaling factors alpha and beta can
be used to scale the input tensor and the output tensor respectively.

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

wDesc

Input. Handle to a previously initialized filter descriptor.
w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the input differential tensor
descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor.
algo

Input. Enumerant that specifies which backward data convolution algorithm shoud be
used to compute the results.

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer
can be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
dx

Input/Output. Data pointer to GPU memory associated with the output tensor
descriptor dxDesc that carries the result.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 100

This function supports only three specific combinations of data types for wDesc,
dyDesc, convDesc and dxDesc. See the following for an exhaustive list of these
configurations.

Data Type Configurations
wDesc's, dyDesc's and
dxDesc's Data Type convDesc's Data Type

TRUE_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_HALF

PSEUDO_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_FLOAT

FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

DOUBLE_CONFIG CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following for an exhaustive list of algorithm options
and their respective supported parameters and deterministic behavior.

wDesc may only have format CUDNN_TENSOR_NHWC when all of the following are
true:

‣ algo is CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
‣ dyDesc and dxDesc is NHWC HWC-packed
‣ Data type configuration is PSEUDO_HALF_CONFIG or FLOAT_CONFIG
‣ The convolution is 2-dimensional

The following is an exhaustive list of algo support for 2-d convolutions.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0

‣ Deterministic: No
‣ dyDesc Format Support: NCHW CHW-packed
‣ dxDesc Format Support: All except NCHW_VECT_C
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: greater than 0 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ Deterministic: Yes
‣ dyDesc Format Support: NCHW CHW-packed
‣ dxDesc Format Support: All except NCHW_VECT_C
‣ Data Type Config Support: All
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT

‣ Deterministic: Yes
‣ dyDesc Format Support: NCHW CHW-packed
‣ dxDesc Format Support: NCHW HW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 101

‣ Notes:

‣ dxDesc's feature map height + 2 * convDesc's zero-padding height must
equal 256 or less

‣ dxDesc's feature map width + 2 * convDesc's zero-padding width must
equal 256 or less

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING

‣ Deterministic: Yes
‣ dyDesc Format Support: NCHW CHW-packed
‣ dxDesc Format Support: NCHW HW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG

(DOUBLE_CONFIG is also supported when the task can be handled by 1D FFT,
ie, one of the filter dimension, width or height is 1)

‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ when neither of wDesc's filter dimension is 1, the filter width and height
must not be larger than 32

‣ when either of wDesc's filter dimension is 1, the largest filter dimension
should not exceed 256

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD

‣ Deterministic: Yes
‣ xDesc Format Support: NCHW CHW-packed
‣ yDesc Format Support: All except NCHW_VECT_C
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be 3
‣ wDesc's filter width must be 3

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED

‣ Deterministic: Yes
‣ xDesc Format Support: NCHW CHW-packed
‣ yDesc Format Support: All except NCHW_VECT_C
‣ Data Type Config Support: All except DOUBLE_CONFIG
‣ Dilation: 1 for all dimensions

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 102

‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter (height, width) must be (3,3) or (5,5)
‣ If wDesc's filter (height, width) is (5,5), data type config

TRUE_HALF_CONFIG is not supported

The following is an exhaustive list of algo support for 3-d convolutions.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0

‣ Deterministic: No
‣ dyDesc Format Support: NCDHW CDHW-packed
‣ dxDesc Format Support: All except NCHW_VECT_C
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: greater than 0 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ Deterministic: Yes
‣ dyDesc Format Support: NCDHW-fully-packed
‣ dxDesc Format Support: NCDHW-fully-packed
‣ Data Type Config Support: All
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Greater than 0.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING

‣ Deterministic: Yes
‣ dyDesc Format Support: NCDHW CDHW-packed
‣ dxDesc Format Support: NCDHW DHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Dilation: 1 for all dimensions
‣ convDesc Group Count Support: Equal to 1.
‣ Notes:

‣ wDesc's filter height must equal 16 or less
‣ wDesc's filter width must equal 16 or less
‣ wDesc's filter depth must equal 16 or less
‣ convDesc's must have all filter strides equal to 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width
‣ wDesc's filter depth must be greater than convDesc's zero-padding width

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The operation was launched successfully.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 103

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ At least one of the following is NULL: handle, dyDesc, wDesc, convDesc,
dxDesc, dy, w, dx, alpha, beta

‣ wDesc and dyDesc have a non-matching number of dimensions
‣ wDesc and dxDesc have a non-matching number of dimensions
‣ wDesc has fewer than three number of dimensions
‣ wDesc, dxDesc and dyDesc have a non-matching data type.
‣ wDesc and dxDesc have a non-matching number of input feature maps per

image (or group in case of Grouped Convolutions).
‣ dyDescs's spatial sizes do not match with the expected size as determined by

cudnnGetConvolutionNdForwardOutputDim

CUDNN_STATUS_NOT_SUPPORTED
At least one of the following conditions are met:

‣ dyDesc or dxDesc have negative tensor striding
‣ dyDesc, wDesc or dxDesc has a number of dimensions that is not 4 or 5
‣ The chosen algo does not support the parameters provided; see above for

exhaustive list of parameter support for each algo
‣ dyDesc or wDesc indicate an output channel count that isn't a multiple of group

count (if group count has been set in convDesc).

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture binding of the filter data or the input differential
tensor data

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.62. cudnnSoftmaxForward
cudnnStatus_t cudnnSoftmaxForward(
 cudnnHandle_t handle,
 cudnnSoftmaxAlgorithm_t algorithm,
 cudnnSoftmaxMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This routine computes the softmax function.

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more
than 5 dimensions tensors must be packed in their spatial dimensions

Parameters

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 104

handle

Input. Handle to a previously created cuDNN context.
algorithm

Input. Enumerant to specify the softmax algorithm.
mode

Input. Enumerant to specify the softmax mode.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
y

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the input tensor and output tensors differ.
‣ The datatype of the input tensor and output tensors differ.
‣ The parameters algorithm or mode have an invalid enumerant value.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.63. cudnnSoftmaxBackward
cudnnStatus_t cudnnSoftmaxBackward(
 cudnnHandle_t handle,
 cudnnSoftmaxAlgorithm_t algorithm,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 105

 cudnnSoftmaxMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *yData,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx)

This routine computes the gradient of the softmax function.

In-place operation is allowed for this routine; i.e., dy and dx pointers may be equal.
However, this requires dyDesc and dxDesc descriptors to be identical (particularly,
the strides of the input and output must match for in-place operation to be allowed).

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more
than 5 dimensions tensors must be packed in their spatial dimensions

Parameters
handle

Input. Handle to a previously created cuDNN context.
algorithm

Input. Enumerant to specify the softmax algorithm.
mode

Input. Enumerant to specify the softmax mode.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor.
y

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyData.
dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 106

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the yDesc, dyDesc and dxDesc tensors differ.
‣ The strides nStride, cStride, hStride, wStride of the yDesc and dyDesc

tensors differ.
‣ The datatype of the three tensors differs.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.64. cudnnCreatePoolingDescriptor
cudnnStatus_t cudnnCreatePoolingDescriptor(
 cudnnPoolingDescriptor_t *poolingDesc)

This function creates a pooling descriptor object by allocating the memory needed to
hold its opaque structure,

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.65. cudnnSetPooling2dDescriptor
cudnnStatus_t cudnnSetPooling2dDescriptor(
 cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 cudnnNanPropagation_t maxpoolingNanOpt,
 int windowHeight,
 int windowWidth,
 int verticalPadding,
 int horizontalPadding,
 int verticalStride,
 int horizontalStride)

This function initializes a previously created generic pooling descriptor object into a 2D
description.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 107

Parameters
poolingDesc

Input/Output. Handle to a previously created pooling descriptor.
mode

Input. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.
windowHeight

Input. Height of the pooling window.
windowWidth

Input. Width of the pooling window.
verticalPadding

Input. Size of vertical padding.
horizontalPadding

Input. Size of horizontal padding
verticalStride

Input. Pooling vertical stride.
horizontalStride

Input. Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the parameters windowHeight, windowWidth, verticalStride,
horizontalStride is negative or mode or maxpoolingNanOpt has an invalid
enumerant value.

4.66. cudnnGetPooling2dDescriptor
cudnnStatus_t cudnnGetPooling2dDescriptor(
 const cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t *mode,
 cudnnNanPropagation_t *maxpoolingNanOpt,
 int *windowHeight,
 int *windowWidth,
 int *verticalPadding,
 int *horizontalPadding,
 int *verticalStride,
 int *horizontalStride)

This function queries a previously created 2D pooling descriptor object.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 108

Parameters
poolingDesc

Input. Handle to a previously created pooling descriptor.
mode

Output. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Output. Enumerant to specify the Nan propagation mode.
windowHeight

Output. Height of the pooling window.
windowWidth

Output. Width of the pooling window.
verticalPadding

Output. Size of vertical padding.
horizontalPadding

Output. Size of horizontal padding.
verticalStride

Output. Pooling vertical stride.
horizontalStride

Output. Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

4.67. cudnnSetPoolingNdDescriptor
cudnnStatus_t cudnnSetPoolingNdDescriptor(
 cudnnPoolingDescriptor_t poolingDesc,
 int nbDims,
 const int windowDimA[],
 const int paddingA[],
 const int strideA[])

This function initializes a previously created generic pooling descriptor object.

Parameters
poolingDesc

Input/Output. Handle to a previously created pooling descriptor.
mode

Input. Enumerant to specify the pooling mode.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 109

maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.
nbDims

Input. Dimension of the pooling operation.
windowDimA

Output. Array of dimension nbDims containing the window size for each dimension.
paddingA

Output. Array of dimension nbDims containing the padding size for each dimension.
strideA

Output. Array of dimension nbDims containing the striding size for each dimension.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the elements of the arrays windowDimA, paddingA or strideA is
negative or mode or maxpoolingNanOpthas an invalid enumerant value.

4.68. cudnnGetPoolingNdDescriptor
cudnnStatus_t cudnnGetPoolingNdDescriptor(
const cudnnPoolingDescriptor_t poolingDesc,
int nbDimsRequested,
cudnnPoolingMode_t *mode,
cudnnNanPropagation_t *maxpoolingNanOpt,
int *nbDims,
int windowDimA[],
int paddingA[],
int strideA[])

This function queries a previously initialized generic pooling descriptor object.

Parameters
poolingDesc

Input. Handle to a previously created pooling descriptor.
nbDimsRequested

Input. Dimension of the expected pooling descriptor. It is also the minimum size
of the arrays windowDimA, paddingA and strideA in order to be able to hold the
results.

mode

Output. Enumerant to specify the pooling mode.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 110

maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.
nbDims

Output. Actual dimension of the pooling descriptor.
windowDimA

Output. Array of dimension of at least nbDimsRequested that will be filled with the
window parameters from the provided pooling descriptor.

paddingA

Output. Array of dimension of at least nbDimsRequested that will be filled with the
padding parameters from the provided pooling descriptor.

strideA

Output. Array of dimension at least nbDimsRequested that will be filled with the
stride parameters from the provided pooling descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was queried successfully.
CUDNN_STATUS_NOT_SUPPORTED

The parameter nbDimsRequested is greater than CUDNN_DIM_MAX.

4.69. cudnnDestroyPoolingDescriptor
cudnnStatus_t cudnnDestroyPoolingDescriptor(
 cudnnPoolingDescriptor_t poolingDesc)

This function destroys a previously created pooling descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.70. cudnnGetPooling2dForwardOutputDim
cudnnStatus_t cudnnGetPooling2dForwardOutputDim(
 const cudnnPoolingDescriptor_t poolingDesc,
 const cudnnTensorDescriptor_t inputDesc,
 int *outN,
 int *outC,
 int *outH,
 int *outW)

This function provides the output dimensions of a tensor after 2d pooling has been
applied

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 111

Each dimension h and w of the output images is computed as followed:

 outputDim = 1 + (inputDim + 2*padding - windowDim)/poolingStride;

Parameters
poolingDesc

Input. Handle to a previously inititalized pooling descriptor.
inputDesc

Input. Handle to the previously initialized input tensor descriptor.
N

Output. Number of images in the output.
C

Output. Number of channels in the output.
H

Output. Height of images in the output.
W

Output. Width of images in the output.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ poolingDesc has not been initialized.
‣ poolingDesc or inputDesc has an invalid number of dimensions (2 and 4

respectively are required).

4.71. cudnnGetPoolingNdForwardOutputDim
cudnnStatus_t cudnnGetPoolingNdForwardOutputDim(
 const cudnnPoolingDescriptor_t poolingDesc,
 const cudnnTensorDescriptor_t inputDesc,
 int nbDims,
 int outDimA[])

This function provides the output dimensions of a tensor after Nd pooling has been
applied

Each dimension of the (nbDims-2)-D images of the output tensor is computed as
followed:

 outputDim = 1 + (inputDim + 2*padding - windowDim)/poolingStride;

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 112

Parameters
poolingDesc

Input. Handle to a previously inititalized pooling descriptor.
inputDesc

Input. Handle to the previously initialized input tensor descriptor.
nbDims

Input. Number of dimensions in which pooling is to be applied.
outDimA

Output. Array of nbDims output dimensions.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ poolingDesc has not been initialized.
‣ The value of nbDims is inconsistent with the dimensionality of poolingDesc and

inputDesc.

4.72. cudnnPoolingForward
cudnnStatus_t cudnnPoolingForward(
 cudnnHandle_t handle,
 const cudnnPoolingDescriptor_t poolingDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This function computes pooling of input values (i.e., the maximum or average of several
adjacent values) to produce an output with smaller height and/or width.

All tensor formats are supported, best performance is expected when using HW-
packed tensors. Only 2 and 3 spatial dimensions are allowed.

The dimensions of the ouput tensor yDesc can be smaller or bigger than the
dimensions advised by the routine cudnnGetPooling2dForwardOutputDim or
cudnnGetPoolingNdForwardOutputDim.

Parameters

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 113

handle

Input. Handle to a previously created cuDNN context.
poolingDesc

Input. Handle to a previously initialized pooling descriptor.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
y

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The dimensions n,c of the input tensor and output tensors differ.
‣ The datatype of the input tensor and output tensors differs.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The wStride of input tensor or output tensor is not 1.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.73. cudnnPoolingBackward
cudnnStatus_t cudnnPoolingBackward(
 cudnnHandle_t handle,
 const cudnnPoolingDescriptor_t poolingDesc,
 const void *alpha,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 114

 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void *xData,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx)

This function computes the gradient of a pooling operation.

As of cuDNN version 6.0, a deterministic algorithm is implemented for max backwards
pooling. This algorithm can be chosen via the pooling mode enum of poolingDesc. The
deterministic algorithm has been measured to be up to 50% slower than the legacy max
backwards pooling algorithm, or up to 20% faster, depending upon the use case.

All tensor formats are supported, best performance is expected when using HW-
packed tensors. Only 2 and 3 spatial dimensions are allowed

Parameters
handle

Input. Handle to a previously created cuDNN context.
poolingDesc

Input. Handle to the previously initialized pooling descriptor.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor.
y

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyData.
xDesc

Input. Handle to the previously initialized output tensor descriptor.
x

Input. Data pointer to GPU memory associated with the output tensor descriptor
xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 115

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the yDesc and dyDesc tensors differ.
‣ The strides nStride, cStride, hStride, wStride of the yDesc and dyDesc

tensors differ.
‣ The dimensions n,c,h,w of the dxDesc and dxDesc tensors differ.
‣ The strides nStride, cStride, hStride, wStride of the xDesc and dxDesc

tensors differ.
‣ The datatype of the four tensors differ.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The wStride of input tensor or output tensor is not 1.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.74. cudnnActivationForward
cudnnStatus_t cudnnActivationForward(
 cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This routine applies a specified neuron activation function element-wise over each input
value.

In-place operation is allowed for this routine; i.e., xData and yData pointers
may be equal. However, this requires xDesc and yDesc descriptors to be identical

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 116

(particularly, the strides of the input and output must match for in-place operation to
be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance
is obtained when the strides of xDesc and yDesc are equal and HW-packed. For more
than 5 dimensions the tensors must have their spatial dimensions packed.

Parameters
handle

Input. Handle to a previously created cuDNN context.
activationDesc

Input. Activation descriptor.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
y

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The parameter mode has an invalid enumerant value.
‣ The dimensions n,c,h,w of the input tensor and output tensors differ.
‣ The datatype of the input tensor and output tensors differs.
‣ The strides nStride,cStride,hStride,wStride of the input tensor and

output tensors differ and in-place operation is used (i.e., x and y pointers are
equal).

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 117

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.75. cudnnActivationBackward
cudnnStatus_t cudnnActivationBackward(
 cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx)

This routine computes the gradient of a neuron activation function.

In-place operation is allowed for this routine; i.e. dy and dx pointers may be
equal. However, this requires the corresponding tensor descriptors to be identical
(particularly, the strides of the input and output must match for in-place operation to
be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance
is obtained when the strides of yDesc and xDesc are equal and HW-packed. For more
than 5 dimensions the tensors must have their spatial dimensions packed.

Parameters
handle

Input. Handle to a previously created cuDNN context.
activationDesc,

Input. Activation descriptor.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor.
y

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 118

dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
xDesc

Input. Handle to the previously initialized output tensor descriptor.
x

Input. Data pointer to GPU memory associated with the output tensor descriptor
xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The strides nStride, cStride, hStride, wStride of the input differential
tensor and output differential tensors differ and in-place operation is used.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The dimensions n,c,h,w of the input tensor and output tensors differ.
‣ The datatype of the input tensor and output tensors differs.
‣ The strides nStride, cStride, hStride, wStride of the input tensor and

the input differential tensor differ.
‣ The strides nStride, cStride, hStride, wStride of the output tensor and

the output differential tensor differ.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.76. cudnnCreateActivationDescriptor
cudnnStatus_t cudnnCreateActivationDescriptor(
 cudnnActivationDescriptor_t *activationDesc)

This function creates a activation descriptor object by allocating the memory needed to
hold its opaque structure.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 119

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.77. cudnnSetActivationDescriptor
cudnnStatus_t cudnnSetActivationDescriptor(
 cudnnActivationDescriptor_t activationDesc,
 cudnnActivationMode_t mode,
 cudnnNanPropagation_t reluNanOpt,
 double coef)

This function initializes a previously created generic activation descriptor object.

Parameters
activationDesc

Input/Output. Handle to a previously created pooling descriptor.
mode

Input. Enumerant to specify the activation mode.
reluNanOpt

Input. Enumerant to specify the Nan propagation mode.
coef

Input. floating point number to specify the clipping threashold when the activation
mode is set to CUDNN_ACTIVATION_CLIPPED_RELU or to specify the alpha coefficient
when the activation mode is set to CUDNN_ACTIVATION_ELU.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

mode or reluNanOpt has an invalid enumerant value.

4.78. cudnnGetActivationDescriptor
cudnnStatus_t cudnnGetActivationDescriptor(
 const cudnnActivationDescriptor_t activationDesc,
 cudnnActivationMode_t *mode,
 cudnnNanPropagation_t *reluNanOpt,
 double *coef)

This function queries a previously initialized generic activation descriptor object.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 120

Parameters
activationDesc

Input. Handle to a previously created activation descriptor.
mode

Output. Enumerant to specify the activation mode.
reluNanOpt

Output. Enumerant to specify the Nan propagation mode.
coef

Output. Floating point number to specify the clipping threashod when the activation
mode is set to CUDNN_ACTIVATION_CLIPPED_RELU or to specify the alpha coefficient
when the activation mode is set to CUDNN_ACTIVATION_ELU.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was queried successfully.

4.79. cudnnDestroyActivationDescriptor
cudnnStatus_t cudnnDestroyActivationDescriptor(
 cudnnActivationDescriptor_t activationDesc)

This function destroys a previously created activation descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.80. cudnnCreateLRNDescriptor
cudnnStatus_t cudnnCreateLRNDescriptor(
 cudnnLRNDescriptor_t *poolingDesc)

This function allocates the memory needed to hold the data needed for LRN and
DivisiveNormalization layers operation and returns a descriptor used with subsequent
layer forward and backward calls.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 121

4.81. cudnnSetLRNDescriptor
cudnnStatus_t cudnnSetLRNDescriptor(
 cudnnLRNDescriptor_t normDesc,
 unsigned lrnN,
 double lrnAlpha,
 double lrnBeta,
 double lrnK)

This function initializes a previously created LRN descriptor object.

Macros CUDNN_LRN_MIN_N, CUDNN_LRN_MAX_N, CUDNN_LRN_MIN_K,
CUDNN_LRN_MIN_BETA defined in cudnn.h specify valid ranges for parameters.

Values of double parameters will be cast down to the tensor datatype during
computation.

Parameters
normDesc

Output. Handle to a previously created LRN descriptor.
lrnN

Input. Normalization window width in elements. LRN layer uses a window [center-
lookBehind, center+lookAhead], where lookBehind = floor((lrnN-1)/2), lookAhead
= lrnN-lookBehind-1. So for n=10, the window is [k-4...k...k+5] with a total of 10
samples. For DivisiveNormalization layer the window has the same extents as above
in all 'spatial' dimensions (dimA[2], dimA[3], dimA[4]). By default lrnN is set to 5 in
cudnnCreateLRNDescriptor.

lrnAlpha

Input. Value of the alpha variance scaling parameter in the normalization formula.
Inside the library code this value is divided by the window width for LRN and by
(window width)^#spatialDimensions for DivisiveNormalization. By default this value
is set to 1e-4 in cudnnCreateLRNDescriptor.

lrnBeta

Input. Value of the beta power parameter in the normalization formula. By default
this value is set to 0.75 in cudnnCreateLRNDescriptor.

lrnK

Input. Value of the k parameter in normalization formula. By default this value is set
to 2.0.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 122

CUDNN_STATUS_BAD_PARAM

One of the input parameters was out of valid range as described above.

4.82. cudnnGetLRNDescriptor
cudnnStatus_t cudnnGetLRNDescriptor(
 cudnnLRNDescriptor_t normDesc,
 unsigned *lrnN,
 double *lrnAlpha,
 double *lrnBeta,
 double *lrnK)

This function retrieves values stored in the previously initialized LRN descriptor object.

Parameters
normDesc

Output. Handle to a previously created LRN descriptor.
lrnN, lrnAlpha, lrnBeta, lrnK

Output. Pointers to receive values of parameters stored in the descriptor object. See
cudnnSetLRNDescriptor for more details. Any of these pointers can be NULL (no
value is returned for the corresponding parameter).

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

Function completed successfully.

4.83. cudnnDestroyLRNDescriptor
cudnnStatus_t cudnnDestroyLRNDescriptor(
 cudnnLRNDescriptor_t lrnDesc)

This function destroys a previously created LRN descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.84. cudnnLRNCrossChannelForward
cudnnStatus_t cudnnLRNCrossChannelForward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnLRNMode_t lrnMode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 123

 const cudnnTensorDescriptor_t yDesc,
 void *y)

This function performs the forward LRN layer computation.

Supported formats are: positive-strided, NCHW for 4D x and y, and only NCDHW
DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are
supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously intialized LRN parameter descriptor.
lrnMode

Input. LRN layer mode of operation. Currently only
CUDNN_LRN_CROSS_CHANNEL_DIM1 is implemented. Normalization is
performed along the tensor's dimA[1].

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors.
x

Input. Input tensor data pointer in device memory.
y

Output. Output tensor data pointer in device memory.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the tensor pointers x, y is NULL.
‣ Number of input tensor dimensions is 2 or less.
‣ LRN descriptor parameters are outside of their valid ranges.
‣ One of tensor parameters is 5D but is not in NCDHW DHW-packed format.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 124

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ Any of the input tensor datatypes is not the same as any of the output tensor
datatype.

‣ x and y tensor dimensions mismatch.
‣ Any tensor parameters strides are negative.

4.85. cudnnLRNCrossChannelBackward
cudnnStatus_t cudnnLRNCrossChannelBackward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnLRNMode_t lrnMode,
 const void *alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx)

This function performs the backward LRN layer computation.

Supported formats are: positive-strided, NCHW for 4D x and y, and only NCDHW
DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are
supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously intialized LRN parameter descriptor.
lrnMode

Input. LRN layer mode of operation. Currently only
CUDNN_LRN_CROSS_CHANNEL_DIM1 is implemented. Normalization is
performed along the tensor's dimA[1].

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

yDesc, y

Input. Tensor descriptor and pointer in device memory for the layer's y data.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 125

dyDesc, dy

Input. Tensor descriptor and pointer in device memory for the layer's input
cumulative loss differential data dy (including error backpropagation).

xDesc, x

Input. Tensor descriptor and pointer in device memory for the layer's x data. Note
that these values are not modified during backpropagation.

dxDesc, dx

Output. Tensor descriptor and pointer in device memory for the layer's resulting
cumulative loss differential data dx (including error backpropagation).

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the tensor pointers x, y is NULL.
‣ Number of input tensor dimensions is 2 or less.
‣ LRN descriptor parameters are outside of their valid ranges.
‣ One of tensor parameters is 5D but is not in NCDHW DHW-packed format.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ Any of the input tensor datatypes is not the same as any of the output tensor
datatype.

‣ Any pairwise tensor dimensions mismatch for x,y,dx,dy.
‣ Any tensor parameters strides are negative.

4.86. cudnnDivisiveNormalizationForward

cudnnStatus_t cudnnDivisiveNormalizationForward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnDivNormMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *means,
 void *temp,
 void *temp2,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 126

This function performs the forward spatial DivisiveNormalization layer computation.
It divides every value in a layer by the standard deviation of it's spatial neighbors as
described in "What is the Best Multi-Stage Architecture for Object Recognition", Jarrett
2009, Local Contrast Normalization Layer section. Note that Divisive Normalization
only implements the x/max(c, sigma_x) portion of the computation, where sigma_x
is the variance over the spatial neighborhood of x. The full LCN (Local Contrastive
Normalization) computation can be implemented as a two-step process:

x_m = x-mean(x);

y = x_m/max(c, sigma(x_m));

The "x-mean(x)" which is often referred to as "subtractive normalization" portion of the
computation can be implemented using cuDNN average pooling layer followed by a call
to addTensor.

Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-
overlapping non-negative strides. Only 4D and 5D tensors are supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously intialized LRN parameter descriptor. This descriptor is
used for both LRN and DivisiveNormalization layers.

divNormMode

Input. DivisiveNormalization layer mode of operation. Currently only
CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is
performed using the means input tensor that is expected to be precomputed by the
user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors. Note that xDesc is
shared between x, means, temp and temp2 tensors.

x

Input. Input tensor data pointer in device memory.
means

Input. Input means tensor data pointer in device memory. Note that this tensor can
be NULL (in that case it's values are assumed to be zero during the computation).
This tensor also doesn't have to contain means, these can be any values, a frequently

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 127

used variation is a result of convolution with a normalized positive kernel (such as
Gaussian).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing
intermediate values during the forward pass. These tensors do not have to be
preserved as inputs from forward to the backward pass. Both use xDesc as their
descriptor.

y

Output. Pointer in device memory to a tensor for the result of the forward
DivisiveNormalization computation.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the tensor pointers x, y, temp, temp2 is NULL.
‣ Number of input tensor or output tensor dimensions is outside of [4,5] range.
‣ A mismatch in dimensions between any two of the input or output tensors.
‣ For in-place computation when pointers x == y, a mismatch in strides between the

input data and output data tensors.
‣ Alpha or beta pointer is NULL.
‣ LRN descriptor parameters are outside of their valid ranges.
‣ Any of the tensor strides are negative.

CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ Any of the input and output tensor strides mismatch (for the same dimension).

4.87. cudnnDivisiveNormalizationBackward
 cudnnStatus_t cudnnDivisiveNormalizationBackward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnDivNormMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *means,
 const void *dy,
 void *temp,
 void *temp2,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 128

 void *dMeans)

This function performs the backward DivisiveNormalization layer computation.

Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-
overlapping non-negative strides. Only 4D and 5D tensors are supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously intialized LRN parameter descriptor (this descriptor is
used for both LRN and DivisiveNormalization layers).

mode

Input. DivisiveNormalization layer mode of operation. Currently only
CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is
performed using the means input tensor that is expected to be precomputed by the
user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc, x, means

Input. Tensor descriptor and pointers in device memory for the layer's x and means
data. Note: the means tensor is expected to be precomputed by the user. It can also
contain any valid values (not required to be actual means, and can be for instance a
result of a convolution with a Gaussian kernel).

dy

Input. Tensor pointer in device memory for the layer's dy cumulative loss differential
data (error backpropagation).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing
intermediate values during the backward pass. These tensors do not have to be
preserved from forward to backward pass. Both use xDesc as a descriptor.

dxDesc

Input. Tensor descriptor for dx and dMeans.
dx, dMeans

Output. Tensor pointers (in device memory) for the layer's resulting cumulative
gradients dx and dMeans (dLoss/dx and dLoss/dMeans). Both share the same
descriptor.

Possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 129

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the tensor pointers x, dx, temp, tmep2, dy is NULL.
‣ Number of any of the input or output tensor dimensions is not within the [4,5]

range.
‣ Either alpha or beta pointer is NULL.
‣ A mismatch in dimensions between xDesc and dxDesc.
‣ LRN descriptor parameters are outside of their valid ranges.
‣ Any of the tensor strides is negative.

CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ Any of the input and output tensor strides mismatch (for the same dimension).

4.88. cudnnBatchNormalizationForwardInference
 cudnnStatus_t cudnnBatchNormalizationForwardInference(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alpha,
 const void *beta,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
 const void *bnScale,
 const void *bnBias,
 const void *estimatedMean,
 const void *estimatedVariance,
 double epsilon)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 130

This function performs the forward BatchNormalization layer computation for inference
phase. This layer is based on the paper "Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift", S. Ioffe, C. Szegedy, 2015.

Only 4D and 5D tensors are supported.

The input transformation performed by this function is defined as: y := alpha*y + beta
*(bnScale * (x-estimatedMean)/sqrt(epsilon + estimatedVariance)+bnBias)

The epsilon value has to be the same during training, backpropagation and inference.

For training phase use cudnnBatchNormalizationForwardTraining.

Much higher performance when HW-packed tensors are used for all of x, dy, dx.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
mode

Input. Mode of operation (spatial or per-activation). cudnnBatchNormMode_t
alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc, yDesc, x, y

Tensor descriptors and pointers in device memory for the layer's x and y data.
bnScaleBiasMeanVarDesc, bnScaleData, bnBiasData

Inputs. Tensor descriptor and pointers in device memory for the batch normalization
scale and bias parameters (in the original paper bias is referred to as beta and scale as
gamma).

estimatedMean, estimatedVariance

Inputs. Mean and variance tensors (these have the same descriptor as the bias and
scale). It is suggested that resultRunningMean, resultRunningVariance from the
cudnnBatchNormalizationForwardTraining call accumulated during the training
phase are passed as inputs here.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 131

epsilon

Input. Epsilon value used in the batch normalization formula. Minimum allowed
value is CUDNN_BN_MIN_EPSILON defined in cudnn.h.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the pointers alpha, beta, x, y, bnScaleData, bnBiasData,
estimatedMean, estimatedInvVariance is NULL.

‣ Number of xDesc or yDesc tensor descriptor dimensions is not within the [4,5]
range.

‣ bnScaleBiasMeanVarDesc dimensions are not 1xC(x1)x1x1 for spatial or
1xC(xD)xHxW for per-activation mode (parenthesis for 5D).

‣ epsilon value is less than CUDNN_BN_MIN_EPSILON
‣ Dimensions or data types mismatch for xDesc, yDesc

4.89. cudnnBatchNormalizationForwardTraining
 cudnnStatus_t cudnnBatchNormalizationForwardTraining(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alpha,
 const void *beta,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
 const void *bnScale,
 const void *bnBias,
 double exponentialAverageFactor,
 void *resultRunningMean,
 void *resultRunningVariance,
 double epsilon,
 void *resultSaveMean,
 void *resultSaveInvVariance)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 132

This function performs the forward BatchNormalization layer computation for training
phase.

Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation and inference.

For inference phase use cudnnBatchNormalizationForwardInference.

Much higher performance for HW-packed tensors for both x and y.

Parameters
handle

Handle to a previously created cuDNN library descriptor.
mode

Mode of operation (spatial or per-activation). cudnnBatchNormMode_t
alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc, yDesc, x, y

Tensor descriptors and pointers in device memory for the layer's x and y data.
bnScaleBiasMeanVarDesc

Shared tensor descriptor desc for all the 6 tensors below in the argument list. The
dimensions for this tensor descriptor are dependent on the normalization mode.

bnScale, bnBias
Inputs. Pointers in device memory for the batch normalization scale and bias
parameters (in original paper bias is referred to as beta and scale as gamma). Note
that bnBias parameter can replace the previous layer's bias parameter for improved
efficiency.

exponentialAverageFactor
Input. Factor used in the moving average computation runningMean =
newMean*factor + runningMean*(1-factor). Use a factor=1/(1+n) at N-th call to the
function to get Cumulative Moving Average (CMA) behavior CMA[n] = (x[1]+...
+x[n])/n. Since CMA[n+1] = (n*CMA[n]+x[n+1])/(n+1)= ((n+1)*CMA[n]-CMA[n])/(n+1)
+ x[n+1]/(n+1) = CMA[n]*(1-1/(n+1))+x[n+1]*1/(n+1)

resultRunningMean, resultRunningVariance

Inputs/Outputs. Running mean and variance tensors (these have the same descriptor
as the bias and scale). Both of these pointers can be NULL but only at the same time.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 133

The value stored in resultRunningVariance (or passed as an input in inference mode)
is the moving average of variance[x] where variance is computed either over batch or
spatial+batch dimensions depending on the mode. If these pointers are not NULL, the
tensors should be initialized to some reasonable values or to 0.

epsilon

Epsilon value used in the batch normalization formula. Minimum allowed value is
CUDNN_BN_MIN_EPSILON defined in cudnn.h. Same epsilon value should be used
in forward and backward functions.

resultSaveMean, resultSaveInvVariance
Outputs. Optional cache to save intermediate results computed during the forward
pass - these can then be reused to speed up the backward pass. For this to work
correctly, the bottom layer data has to remain unchanged until the backward function
is called. Note that both of these parameters can be NULL but only at the same
time. It is recommended to use this cache since memory overhead is relatively small
because these tensors have a much lower product of dimensions than the data
tensors.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ One of the pointers alpha, beta, x, y, bnScaleData, bnBiasData is
NULL.

‣ Number of xDesc or yDesc tensor descriptor dimensions is not within the [4,5]
range.

‣ bnScaleBiasMeanVarDesc dimensions are not 1xC(x1)x1x1 for spatial or
1xC(xD)xHxW for per-activation mode (parens for 5D).

‣ Exactly one of resultSaveMean, resultSaveInvVariance pointers is NULL.
‣ Exactly one of resultRunningMean, resultRunningInvVariance pointers is NULL.
‣ epsilon value is less than CUDNN_BN_MIN_EPSILON
‣ Dimensions or data types mismatch for xDesc, yDesc

4.90. cudnnBatchNormalizationBackward
cudnnStatus_t cudnnBatchNormalizationBackward(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alphaDataDiff,
 const void *betaDataDiff,
 const void *alphaParamDiff,
 const void *betaParamDiff,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 134

 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,
 const cudnnTensorDescriptor_t bnScaleBiasDiffDesc,
 const void *bnScale,
 void *resultBnScaleDiff,
 void *resultBnBiasDiff,
 double epsilon,
 const void *savedMean,
 const void *savedInvVariance)

This function performs the backward BatchNormalization layer computation.

Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation and inference.

Much higher performance when HW-packed tensors are used for all of x, dy, dx.

Parameters
handle

Handle to a previously created cuDNN library descriptor.
mode

Mode of operation (spatial or per-activation). cudnnBatchNormMode_t
alphaDataDiff, betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient
output dx with a prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

alphaParamDiff, betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs
dBnScaleResult and dBnBiasResult with prior values in the destination tensor as
follows: dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this
section for additional details.

xDesc, x, dyDesc, dy, dxDesc, dx

Tensor descriptors and pointers in device memory for the layer's x data,
backpropagated differential dy (inputs) and resulting differential with respect to x, dx
(output).

bnScaleBiasDiffDesc

Shared tensor descriptor for all the 5 tensors below in the argument list (bnScale,
resultBnScaleDiff, resultBnBiasDiff, savedMean, savedInvVariance). The dimensions
for this tensor descriptor are dependent on normalization mode. Note: The data type

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 135

of this tensor descriptor must be 'float' for FP16 and FP32 input tensors, and 'double'
for FP64 input tensors.

bnScale
Input. Pointers in device memory for the batch normalization scale parameter (in
original paper bias is referred to as gamma). Note that bnBias parameter is not
needed for this layer's computation.

resultBnScaleDiff, resultBnBiasDiff
Outputs. Pointers in device memory for the resulting scale and bias differentials
computed by this routine. Note that scale and bias gradients are not backpropagated
below this layer (since they are dead-end computation DAG nodes).

epsilon

Epsilon value used in batch normalization formula. Minimum allowed value is
CUDNN_BN_MIN_EPSILON defined in cudnn.h. Same epsilon value should be used
in forward and backward functions.

savedMean, savedInvVariance
Inputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and bnScale, bnBias
data has to remain unchanged until the backward function is called. Note that both of
these parameters can be NULL but only at the same time. It is recommended to use
this cache since the memory overhead is relatively small.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ Any of the pointers alpha, beta, x, dy, dx, bnScale,
resultBnScaleDiff, resultBnBiasDiff is NULL.

‣ Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the [4,5] range.

‣ bnScaleBiasMeanVarDesc dimensions are not 1xC(x1)x1x1 for spatial or
1xC(xD)xHxW for per-activation mode (parentheses for 5D).

‣ Exactly one of savedMean, savedInvVariance pointers is NULL.
‣ epsilon value is less than CUDNN_BN_MIN_EPSILON
‣ Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc

4.91. cudnnDeriveBNTensorDescriptor
cudnnStatus_t cudnnDeriveBNTensorDescriptor(
 cudnnTensorDescriptor_t derivedBnDesc,
 const cudnnTensorDescriptor_t xDesc,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 136

 cudnnBatchNormMode_t mode)

Derives a secondary tensor descriptor for BatchNormalization scale, invVariance, bnBias,
bnScale subtensors from the layer's x data descriptor. Use the tensor descriptor produced
by this function as the bnScaleBiasMeanVarDesc and bnScaleBiasDiffDesc parameters
in Spatial and Per-Activation Batch Normalization forward and backward functions.
Resulting dimensions will be 1xC(x1)x1x1 for BATCHNORM_MODE_SPATIAL and
1xC(xD)xHxW for BATCHNORM_MODE_PER_ACTIVATION (parentheses for 5D). For
HALF input data type the resulting tensor descriptor will have a FLOAT type. For other
data types it will have the same type as the input data.

Only 4D and 5D tensors are supported.

derivedBnDesc has to be first created using cudnnCreateTensorDescriptor

xDesc is the descriptor for the layer's x data and has to be setup with proper
dimensions prior to calling this function.

Parameters
derivedBnDesc

Output. Handle to a previously created tensor descriptor.
xDesc

Input. Handle to a previously created and initialized layer's x data descriptor.
mode

Input. Batch normalization layer mode of operation.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_BAD_PARAM

Invalid Batch Normalization mode.

4.92. cudnnCreateRNNDescriptor
cudnnStatus_t cudnnCreateRNNDescriptor(
 cudnnRNNDescriptor_t *rnnDesc)

This function creates a generic RNN descriptor object by allocating the memory needed
to hold its opaque structure.

Returns

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 137

CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.93. cudnnDestroyRNNDescriptor
cudnnStatus_t cudnnDestroyRNNDescriptor(
 cudnnRNNDescriptor_t rnnDesc)

This function destroys a previously created RNN descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.94. cudnnCreatePersistentRNNPlan
cudnnStatus_t cudnnCreatePersistentRNNPlan(
 cudnnRNNDescriptor_t rnnDesc,
 const int minibatch,
 const cudnnDataType_t dataType,
 cudnnPersistentRNNPlan_t *plan)

This function creates a plan to execute persistent RNNs when using the
CUDNN_RNN_ALGO_PERSIST_DYNAMIC algo. This plan is tailored to the current GPU
and problem hyperparemeters. This function call is expected to be expensive in terms of
runtime, and should be used infrequently.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.
CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING

A prerequisite runtime library cannot be found.
CUDNN_STATUS_NOT_SUPPORTED

The current hyperparameters are invalid.

4.95. cudnnSetPersistentRNNPlan
cudnnStatus_t cudnnSetPersistentRNNPlan(
 cudnnRNNDescriptor_t rnnDesc,
 cudnnPersistentRNNPlan_t plan)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 138

This function sets the persistent RNN plan to be executed when using rnnDesc and
CUDNN_RNN_ALGO_PERSIST_DYNAMIC algo.

Returns
CUDNN_STATUS_SUCCESS

The plan was set successfully.
CUDNN_STATUS_BAD_PARAM

The algo selected in rnnDesc is not CUDNN_RNN_ALGO_PERSIST_DYNAMIC.

4.96. cudnnDestroyPersistentRNNPlan
cudnnStatus_t cudnnDestroyPersistentRNNPlan(
 cudnnPersistentRNNPlan_t plan)

This function destroys a previously created persistent RNN plan object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.97. cudnnSetRNNDescriptor
cudnnStatus_t cudnnSetRNNDescriptor(
 cudnnHandle_t handle,
 cudnnRNNDescriptor_t rnnDesc,
 int hiddenSize,
 int numLayers,
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnRNNInputMode_t inputMode,
 cudnnDirectionMode_t direction,
 cudnnRNNMode_t mode,
 cudnnRNNAlgo_t algo,
 cudnnDataType_t dataType)

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more
efficient than smaller networks.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.
hiddenSize

Input. Size of the internal hidden state for each layer.
numLayers

Input. Number of stacked layers.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 139

dropoutDesc

Input. Handle to a previously created and initialized dropout descriptor. Dropout will
be applied between layers; a single layer network will have no dropout applied.

inputMode

Input. Specifies the behavior at the input to the first layer.
direction

Input. Specifies the recurrence pattern. (e.g., bidirectional).
mode

Input. Specifies the type of RNN to compute.
dataType

Input. Math precision.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

Either at least one of the parameters hiddenSize, numLayers was zero or negative,
one of inputMode, direction, mode, dataType has an invalid enumerant value,
dropoutDesc is an invalid dropout descriptor or rnnDesc has not been created
correctly.

4.98. cudnnSetRNNDescriptor_v6
cudnnStatus_t cudnnSetRNNDescriptor_v6(
 cudnnHandle_t handle,
 cudnnRNNDescriptor_t rnnDesc,
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnRNNInputMode_t inputMode,
 cudnnDirectionMode_t direction,
 cudnnRNNMode_t mode,
 cudnnRNNAlgo_t algo,
 cudnnDataType_t dataType)

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more
efficient than smaller networks.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input/Output. A previously created RNN descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 140

hiddenSize

Input. Size of the internal hidden state for each layer.
numLayers

Input. Number of stacked layers.
dropoutDesc

Input. Handle to a previously created and initialized dropout descriptor. Dropout will
be applied between layers (e.g., a single layer network will have no dropout applied).

inputMode

Input. Specifies the behavior at the input to the first layer
direction

Input. Specifies the recurrence pattern. (e.g., bidirectional)
mode

Input. Specifies the type of RNN to compute.
algo

Input. Specifies which RNN algorithm should be used to compute the results.
dataType

Input. Compute precision.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

Either at least one of the parameters hiddenSize, numLayers was zero or
negative, one of inputMode, direction, mode, algo, dataType has an invalid
enumerant value, dropoutDesc is an invalid dropout descriptor or rnnDesc has not
been created correctly.

4.99. cudnnSetRNNDescriptor_v5
cudnnStatus_t cudnnSetRNNDescriptor_v5(
 cudnnRNNDescriptor_t rnnDesc,
 int hiddenSize,
 int numLayers,
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnRNNInputMode_t inputMode,
 cudnnDirectionMode_t direction,
 cudnnRNNMode_t mode,
 cudnnDataType_t dataType)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 141

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more
efficient than smaller networks.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.
hiddenSize

Input. Size of the internal hidden state for each layer.
numLayers

Input. Number of stacked layers.
dropoutDesc

Input. Handle to a previously created and initialized dropout descriptor. Dropout will
be applied between layers (e.g., a single layer network will have no dropout applied).

inputMode

Input. Specifies the behavior at the input to the first layer
direction

Input. Specifies the recurrence pattern. (e.g., bidirectional)
mode

Input. Specifies the type of RNN to compute.
dataType

Input. Compute precision.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD_PARAM

Either at least one of the parameters hiddenSize, numLayers was zero or
negative, one of inputMode, direction, mode, algo, dataType has an invalid
enumerant value, dropoutDesc is an invalid dropout descriptor or rnnDesc has not
been created correctly.

4.100. cudnnGetRNNWorkspaceSize
cudnnStatus_t cudnnGetRNNWorkspaceSize(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 size_t *sizeInBytes)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 142

This function is used to query the amount of work space required to execute the RNN
described by rnnDesc with inputs dimensions defined by xDesc.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over.
xDesc

Input. An array of tensor descriptors describing the input to each recurrent iteration
(one descriptor per iteration). The first dimension (batch size) of the tensors may
decrease from element n to element n+1 but may not increase. Each tensor descriptor
must have the same second dimension (vector length).

sizeInBytes

Output. Minimum amount of GPU memory needed as workspace to be able to
execute an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors in xDesc is invalid.
‣ The descriptors in xDesc have inconsistent second dimensions, strides or data

types.
‣ The descriptors in xDesc have increasing first dimensions.
‣ The descriptors in xDesc is not fully packed.

CUDNN_STATUS_NOT_SUPPORTED

The data types in tensors described by xDesc is not supported.

4.101. cudnnGetRNNTrainingReserveSize
cudnnStatus_t cudnnGetRNNTrainingReserveSize(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 size_t *sizeInBytes)

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 143

This function is used to query the amount of reserved space required for training
the RNN described by rnnDesc with inputs dimensions defined by xDesc. The
same reserved space buffer must be passed to cudnnRNNForwardTraining,
cudnnRNNBackwardData and cudnnRNNBackwardWeights. Each of these calls
overwrites the contents of the reserved space, however it can safely be backed up and
restored between calls if reuse of the memory is desired.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over.
xDesc

Input. An array of tensor descriptors describing the input to each recurrent iteration
(one descriptor per iteration). The first dimension (batch size) of the tensors may
decrease from element n to element n+1 but may not increase. Each tensor descriptor
must have the same second dimension (vector length).

sizeInBytes

Output. Minimum amount of GPU memory needed as reserve space to be able to train
an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors in xDesc is invalid.
‣ The descriptors in xDesc have inconsistent second dimensions, strides or data

types.
‣ The descriptors in xDesc have increasing first dimensions.
‣ The descriptors in xDesc is not fully packed.

CUDNN_STATUS_NOT_SUPPORTED

The the data types in tensors described by xDesc is not supported.

4.102. cudnnGetRNNParamsSize
cudnnStatus_t cudnnGetRNNParamsSize(

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 144

 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const cudnnTensorDescriptor_t xDesc,
 size_t *sizeInBytes,
 cudnnDataType_t dataType)

This function is used to query the amount of parameter space required to execute the
RNN described by rnnDesc with inputs dimensions defined by xDesc.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration.
sizeInBytes

Output. Minimum amount of GPU memory needed as parameter space to be able to
execute an RNN with the specified descriptor and input tensors.

dataType

Input. The data type of the parameters.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ The descriptor xDesc is invalid.
‣ The descriptor xDesc is not fully packed.
‣ The combination of dataType and tensor descriptor data type is invalid.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the RNN descriptor and tensor descriptors is not supported.

4.103. cudnnGetRNNLinLayerMatrixParams
cudnnStatus_t cudnnGetRNNLinLayerMatrixParams(
cudnnHandle_t handle,
const cudnnRNNDescriptor_t rnnDesc,
const int layer,
const cudnnTensorDescriptor_t xDesc,
const cudnnFilterDescriptor_t wDesc,
const void *w,
const int linLayerID,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 145

cudnnFilterDescriptor_t linLayerMatDesc,
void **linLayerMat)

This function is used to obtain a pointer and descriptor for the matrix parameters in
layer within the RNN described by rnnDesc with inputs dimensions defined by
xDesc.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input. A previously initialized RNN descriptor.
layer

Input. The layer to query.
xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration.
wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
linLayerID

Input. The linear layer to obtain information about:

‣ If mode in rnnDesc was set to CUDNN_RNN_RELU or CUDNN_RNN_TANH a value of 0
references the matrix multiplication applied to the input from the previous layer,
a value of 1 references the matrix multiplication applied to the recurrent input.

‣ If mode in rnnDesc was set to CUDNN_LSTM values of 0-3 reference matrix
multiplications applied to the input from the previous layer, value of 4-7
reference matrix multiplications applied to the recurrent input.

‣ Values 0 and 4 reference the input gate.
‣ Values 1 and 5 reference the forget gate.
‣ Values 2 and 6 reference the new memory gate.
‣ Values 3 and 7 reference the output gate.

‣ If mode in rnnDesc was set to CUDNN_GRU values of 0-2 reference matrix
multiplications applied to the input from the previous layer, value of 3-5
reference matrix multiplications applied to the recurrent input.

‣ Values 0 and 3 reference the reset gate.
‣ Values 1 and 4 reference the update gate.
‣ Values 2 and 5 reference the new memory gate.

Please refer to this section for additional details on modes.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 146

linLayerMatDesc

Output. Handle to a previously created filter descriptor.
linLayerMat

Output. Data pointer to GPU memory associated with the filter descriptor
linLayerMatDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ One of the descriptors xDesc, wDesc, linLayerMatDesc is invalid.
‣ One of layer, linLayerID is invalid.

4.104. cudnnGetRNNLinLayerBiasParams
cudnnStatus_t cudnnGetRNNLinLayerBiasParams(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int layer,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const int linLayerID,
 cudnnFilterDescriptor_t linLayerBiasDesc,
 void **linLayerBias)

This function is used to obtain a pointer and descriptor for the bias parameters in layer
within the RNN described by rnnDesc with inputs dimensions defined by xDesc.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input. A previously initialized RNN descriptor.
layer

Input. The layer to query.
xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 147

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
linLayerID

Input. The linear layer to obtain information about:

‣ If mode in rnnDesc was set to CUDNN_RNN_RELU or CUDNN_RNN_TANH a value
of 0 references the bias applied to the input from the previous layer, a value of 1
references the bias applied to the recurrent input.

‣ If mode in rnnDesc was set to CUDNN_LSTM values of 0, 1, 2 and 3 reference bias
applied to the input from the previous layer, value of 4, 5, 6 and 7 reference bias
applied to the recurrent input.

‣ Values 0 and 4 reference the input gate.
‣ Values 1 and 5 reference the forget gate.
‣ Values 2 and 6 reference the new memory gate.
‣ Values 3 and 7 reference the output gate.

‣ If mode in rnnDesc was set to CUDNN_GRU values of 0, 1 and 2 reference bias
applied to the input from the previous layer, value of 3, 4 and 5 reference bias
applied to the recurrent input.

‣ Values 0 and 3 reference the reset gate.
‣ Values 1 and 4 reference the update gate.
‣ Values 2 and 5 reference the new memory gate.

Please refer to this section for additional details on modes.
linLayerBiasDesc

Output. Handle to a previously created filter descriptor.
linLayerBias

Output. Data pointer to GPU memory associated with the filter descriptor
linLayerMatDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 148

‣ One of the descriptors xDesc, wDesc, linLayerBiasDesc is invalid.
‣ One of layer, linLayerID is invalid.

4.105. cudnnRNNForwardInference
cudnnStatus_t cudnnRNNForwardInference(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t *yDesc,
 void *y,
 const cudnnTensorDescriptor_t hyDesc,
 void *hy,
 const cudnnTensorDescriptor_t cyDesc,
 void *cy,
 void *workspace,
 size_t workSpaceSizeInBytes)

This routine executes the recurrent neural network described by rnnDesc with
inputs x, hx, cx, weights w and outputs y, hy, cy. workspace is required for
intermediate storage. This function does not store intermediate data required for
training; cudnnRNNForwardTraining should be used for that purpose.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over.
xDesc

Input. An array of fully packed tensor descriptors describing the input to each
recurrent iteration (one descriptor per iteration). The first dimension (batch size) of
the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

x

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array xDesc. The data are expected to be packed contiguously with the first element
of iteration n+1 following directly from the last element of iteration n.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 149

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 150

‣ If direction is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
xDesc.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc. The data are expected to be packed contiguously with the first element of
iteration n+1 following directly from the last element of iteration n.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If
a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If
a NULL pointer is passed, the final cell state of the network will be not be saved.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 151

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or

one of the descriptors in xDesc, yDesc is invalid.
‣ The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc,

hyDesc, cyDesc have incorrect strides or dimensions.
‣ workSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.106. cudnnRNNForwardTraining
cudnnStatus_t cudnnRNNForwardTraining(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t *yDesc,
 void *y,
 const cudnnTensorDescriptor_t hyDesc,
 void *hy,
 const cudnnTensorDescriptor_t cyDesc,
 void *cy,
 void *workspace,
 size_t workSpaceSizeInBytes,
 void *reserveSpace,

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 152

 size_t reserveSpaceSizeInBytes)

This routine executes the recurrent neural network described by rnnDesc with
inputs x, hx, cx, weights w and outputs y, hy, cy. workspace is required for
intermediate storage. reserveSpace stores data required for training. The same
reserveSpace data must be used for future calls to cudnnRNNBackwardData and
cudnnRNNBackwardWeights if these execute on the same input data.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. An array of fully packed tensor descriptors describing the input to each
recurrent iteration (one descriptor per iteration). The first dimension (batch size) of
the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

seqLength

Input. Number of iterations to unroll over.
x

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array xDesc.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 153

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
xDesc.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 154

cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If
a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If
a NULL pointer is passed, the final cell state of the network will be not be saved.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.
reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reserveSpace

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or

one of the descriptors in xDesc, yDesc is invalid.
‣ The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc,

hyDesc, cyDesc have incorrect strides or dimensions.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 155

‣ workSpaceSizeInBytes is too small.
‣ reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.107. cudnnRNNBackwardData
cudnnStatus_t cudnnRNNBackwardData(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *yDesc,
 const void *y,
 const cudnnTensorDescriptor_t *dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t dhyDesc,
 const void *dhy,
 const cudnnTensorDescriptor_t dcyDesc,
 const void *dcy,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnTensorDescriptor_t *dxDesc,
 void *dx,
 const cudnnTensorDescriptor_t dhxDesc,
 void *dhx,
 const cudnnTensorDescriptor_t dcxDesc,
 void *dcx,
 void *workspace,
 size_t workSpaceSizeInBytes,
 const void *reserveSpace,
 size_t reserveSpaceSizeInBytes)

This routine executes the recurrent neural network described by rnnDesc with output
gradients dy, dhy, dhc, weights w and input gradients dx, dhx, dcx. workspace
is required for intermediate storage. The data in reserveSpace must have previously
been generated by cudnnRNNForwardTraining. The same reserveSpace data must be
used for future calls to cudnnRNNBackwardWeights if they execute on the same input
data.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 156

yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
dyDesc.

y

Input. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

dyDesc

Input. An array of fully packed tensor descriptors describing the gradient at the
output from each recurrent iteration (one descriptor per iteration). The second
dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the second dimension of the tensor n
in dxDesc.

dy

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array dyDesc.

dhyDesc

Input. A fully packed tensor descriptor describing the gradients at the final hidden
state of the RNN. The first dimension of the tensor depends on the direction
argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 157

dhy

Input. Data pointer to GPU memory associated with the tensor descriptor dhyDesc. If
a NULL pointer is passed, the gradients at the final hidden state of the network will
be initialized to zero.

dcyDesc

Input. A fully packed tensor descriptor describing the gradients at the final cell state
of the RNN. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dcy

Input. Data pointer to GPU memory associated with the tensor descriptor dcyDesc.
If a NULL pointer is passed, the gradients at the final cell state of the network will be
initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 158

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

dxDesc

Input. An array of fully packed tensor descriptors describing the gradient at the
input of each recurrent iteration (one descriptor per iteration). The first dimension
(batch size) of the tensors may decrease from element n to element n+1 but may
not increase. Each tensor descriptor must have the same second dimension (vector
length).

dx

Output. Data pointer to GPU memory associated with the tensor descriptors in the
array dxDesc.

dhxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial hidden
state of the RNN. The first dimension of the tensor depends on the direction
argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dhx

Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc.
If a NULL pointer is passed, the gradient at the hidden input of the network will not
be set.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 159

dcxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial cell state
of the RNN. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dcx

Output. Data pointer to GPU memory associated with the tensor descriptor dcxDesc.
If a NULL pointer is passed, the gradient at the cell input of the network will not be
set.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.
reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reserveSpace.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors dhxDesc, wDesc, hxDesc, cxDesc,

dcxDesc, dhyDesc, dcyDesc or one of the descriptors in yDesc, dxdesc,
dydesc is invalid.

‣ The descriptors in one of yDesc, dxDesc, dyDesc, dhxDesc, wDesc,
hxDesc, cxDesc, dcxDesc, dhyDesc, dcyDesc has incorrect strides or
dimensions.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 160

‣ workSpaceSizeInBytes is too small.
‣ reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.108. cudnnRNNBackwardWeights
cudnnStatus_t cudnnRNNBackwardWeights(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t *yDesc,
 const void *y,
 const void *workspace,
 size_t workSpaceSizeInBytes,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw,
 const void *reserveSpace,
 size_t reserveSpaceSizeInBytes)

This routine accumulates weight gradients dw from the recurrent neural network
described by rnnDesc with inputs x, hx, and outputs y. The mode of operation in this
case is additive, the weight gradients calculated will be added to those already existing
in dw. workspace is required for intermediate storage. The data in reserveSpace must
have previously been generated by cudnnRNNBackwardData.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over.
xDesc

Input. An array of fully packed tensor descriptors describing the input to each
recurrent iteration (one descriptor per iteration). The first dimension (batch size) of
the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

x

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array xDesc.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 161

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
dyDesc.

y

Input. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.
dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of
the weights for the RNN.

dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor
dwDesc.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 162

reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reserveSpace

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors hxDesc, dwDesc or one of the descriptors in

xDesc, yDesc is invalid.
‣ The descriptors in one of xDesc, hxDesc, yDesc, dwDesc has incorrect

strides or dimensions.
‣ workSpaceSizeInBytes is too small.
‣ reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.109. cudnnGetCTCLossWorkspaceSize
cudnnStatus_t cudnnGetCTCLossWorkspaceSize(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t probsDesc,
 const cudnnTensorDescriptor_t gradientsDesc,
 const int *labels,
 const int *labelLengths,
 const int *inputLengths,
 cudnnCTCLossAlgo_t algo,
 const cudnnCTCLossDescriptor_t ctcLossDesc,
 size_t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate
to be able to call cudnnCTCLoss with the specified algorithm. The workspace allocated
will then be passed to the routine cudnnCTCLoss.

Parameters

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 163

handle

Input. Handle to a previously created cuDNN context.
probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor.
gradientsDesc

Input. Handle to a previously initialized gradients tensor descriptor.
labels

Input. Pointer to a previously initialized labels list.
labelLengths

Input. Pointer to a previously initialized lengths list, to walk the above labels list.
inputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each
batch.

algo

Input. Enumerant that specifies the chosen CTC loss algorithm
ctcLossDesc

Input. Handle to the previously initialized CTC loss descriptor.
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute the CTC
loss computation with the specified algo.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The dimensions of probsDesc do not match the dimensions of gradientsDesc.
‣ The inputLengths do not agree with the first dimension of probsDesc.
‣ The workSpaceSizeInBytes is not sufficient.
‣ The labelLengths is greater than 256.

CUDNN_STATUS_NOT_SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm
type was chosen.

4.110. cudnnCTCLoss
cudnnStatus_t cudnnCTCLoss(

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 164

 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t probsDesc,
 const void *probs,
 const int *labels,
 const int *labelLengths,
 const int *inputLengths,
 void *costs,
 const cudnnTensorDescriptor_t gradientsDesc,
 const void *gradients,
 cudnnCTCLossAlgo_t algo,
 const cudnnCTCLossDescriptor_t ctcLossDesc,
 void *workspace,
 size_t *workSpaceSizeInBytes)

This function returns the ctc costs and gradients, given the probabilities and labels.

Parameters
handle

Input. Handle to a previously created cuDNN context.
probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor.
probs

Input. Pointer to a previously initialized probabilities tensor.
labels

Input. Pointer to a previously initialized labels list.
labelLengths

Input. Pointer to a previously initialized lengths list, to walk the above labels list.
inputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each
batch.

costs

Output. Pointer to the computed costs of CTC.
gradientsDesc

Input. Handle to a previously initialized gradients tensor descriptor.
gradients

Output. Pointer to the computed gradients of CTC.
algo

Input. Enumerant that specifies the chosen CTC loss algorithm.
ctcLossDesc

Input. Handle to the previously initialized CTC loss descriptor.
workspace

Input. Pointer to GPU memory of a workspace needed to able to execute the specified
algorithm.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 165

sizeInBytes

Input. Amount of GPU memory needed as workspace to be able to execute the CTC
loss computation with the specified algo.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The dimensions of probsDesc do not match the dimensions of gradientsDesc.
‣ The inputLengths do not agree with the first dimension of probsDesc.
‣ The workSpaceSizeInBytes is not sufficient.
‣ The labelLengths is greater than 256.

CUDNN_STATUS_NOT_SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm
type was chosen.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

4.111. cudnnCreateDropoutDescriptor
cudnnStatus_t cudnnCreateDropoutDescriptor(
 cudnnDropoutDescriptor_t *dropoutDesc)

This function creates a generic dropout descriptor object by allocating the memory
needed to hold its opaque structure.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.112. cudnnDestroyDropoutDescriptor
cudnnStatus_t cudnnDestroyDropoutDescriptor(
 cudnnDropoutDescriptor_t dropoutDesc)

This function destroys a previously created dropout descriptor object.

Returns

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 166

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.113. cudnnDropoutGetStatesSize
cudnnStatus_t cudnnDropoutGetStatesSize(
 cudnnHandle_t handle,
 size_t *sizeInBytes)

This function is used to query the amount of space required to store the states of the
random number generators used by cudnnDropoutForward function.

Parameters
handle

Input. Handle to a previously created cuDNN context.
sizeInBytes

Output. Amount of GPU memory needed to store random generator states.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.

4.114. cudnnDropoutGetReserveSpaceSize
cudnnStatus_t cudnnDropoutGetReserveSpaceSize(
 cudnnTensorDescriptor_t xDesc,
 size_t *sizeInBytes)

This function is used to query the amount of reserve needed to run dropout with the
input dimensions given by xDesc. The same reserve space is expected to be passed to
cudnnDropoutForward and cudnnDropoutBackward, and its contents is expected
to remain unchanged between cudnnDropoutForward and cudnnDropoutBackward
calls.

Parameters
xDesc

Input. Handle to a previously initialized tensor descriptor, describing input to a
dropout operation.

sizeInBytes

Output. Amount of GPU memory needed as reserve space to be able to run dropout
with an input tensor descriptor specified by xDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 167

CUDNN_STATUS_SUCCESS

The query was successful.

4.115. cudnnSetDropoutDescriptor
cudnnStatus_t cudnnSetDropoutDescriptor(
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnHandle_t handle,
 float dropout,
 void *states,
 size_t stateSizeInBytes,
 unsigned long long seed)

This function initializes a previously created dropout descriptor object. If states
argument is equal to NULL, random number generator states won't be initialized, and
only dropout value will be set. No other function should be writing to the memory
pointed at by states argument while this function is running. The user is expected not
to change memory pointed at by states for the duration of the computation.

Parameters
dropoutDesc

Input/Output. Previously created dropout descriptor object.
handle

Input. Handle to a previously created cuDNN context.
dropout

Input. The probability with which the value from input is set to zero during the
dropout layer.

states

Output. Pointer to user-allocated GPU memory that will hold random number
generator states.

stateSizeInBytes

Input. Specifies size in bytes of the provided memory for the states
seed

Input. Seed used to initialize random number generator states.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_INVALID_VALUE

sizeInBytes is less than the value returned by cudnnDropoutGetStatesSize.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 168

4.116. cudnnGetDropoutDescriptor
cudnnStatus_t cudnnGetDropoutDescriptor(
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnHandle_t handle,
 float *dropout,
 void **states,
 unsigned long long *seed)

This function queries the fields of a previously initialized dropout descriptor.

Parameters
dropoutDesc

Input. Previously initialized dropout descriptor.
handle

Input. Handle to a previously created cuDNN context.
dropout

Output. The probability with which the value from input is set to 0 during the
dropout layer.

states

Output. Pointer to user-allocated GPU memory that holds random number generator
states.

seed

Output. Seed used to initialize random number generator states.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_BAD_PARAM

One or more of the arguments was an invalid pointer.

4.117. cudnnRestoreDropoutDescriptor
cudnnStatus_t cudnnRestoreDropoutDescriptor(
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnHandle_t handle,
 float dropout,
 void *states,
 size_t stateSizeInBytes,
 unsigned long long seed)

This function restores a dropout descriptor to a previously saved-off state.

Parameters

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 169

dropoutDesc

Input/Output. Previously created dropout descriptor.
handle

Input. Handle to a previously created cuDNN context.
dropout

Input. Probability with which the value from an input tensor is set to 0 when
performing dropout.

states

Input. Pointer to GPU memory that holds random number generator states initialized
by a prior call to cudnnSetDropoutDescriptor.

stateSizeInBytes

Input. Size in bytes of buffer holding random number generator states.
seed

Input. Seed used in prior call to cudnnSetDropoutDescriptor that initialized
'states' buffer. Using a different seed from this has no effect. A change of seed, and
subsequent update to random number generator states can be achieved by calling
cudnnSetDropoutDescriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_INVALID_VALUE

States buffer size (as indicated in stateSizeInBytes) is too small.

4.118. cudnnDropoutForward
cudnnStatus_t cudnnDropoutForward(
 cudnnHandle_t handle,
 const cudnnDropoutDescriptor_t dropoutDesc,
 const cudnnTensorDescriptor_t xdesc,
 const void *x,
 const cudnnTensorDescriptor_t ydesc,
 void *y,
 void *reserveSpace,
 size_t reserveSpaceSizeInBytes)

This function performs forward dropout operation over x returning results in
y. If dropout was used as a parameter to cudnnSetDropoutDescriptor, the
approximately dropout fraction of x values will be replaces by 0, and the rest will

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 170

be scaled by 1/(1-dropout) This function should not be running concurrently with
another cudnnDropoutForward function using the same states.

Better performance is obtained for fully packed tensors

Should not be called during inference

Parameters
handle

Input. Handle to a previously created cuDNN context.
dropoutDesc

Input. Previously created dropout descriptor object.
xDesc

Input. Handle to a previously initialized tensor descriptor.
x

Input. Pointer to data of the tensor described by the xDesc descriptor.
yDesc

Input. Handle to a previously initialized tensor descriptor.
y

Output. Pointer to data of the tensor described by the yDesc descriptor.
reserveSpace

Output. Pointer to user-allocated GPU memory used by this function. It is expected
that contents of reserveSpace doe not change between cudnnDropoutForward and
cudnnDropoutBackward calls.

reserveSpaceSizeInBytes

Input. Specifies size in bytes of the provided memory for the reserve space.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The number of elements of input tensor and output tensors differ.
‣ The datatype of the input tensor and output tensors differs.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 171

‣ The strides of the input tensor and output tensors differ and in-place operation is
used (i.e., x and y pointers are equal).

‣ The provided reserveSpaceSizeInBytes is less then the value returned by
cudnnDropoutGetReserveSpaceSize.

‣ cudnnSetDropoutDescriptor has not been called on dropoutDesc with the
non-NULL states argument.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.119. cudnnDropoutBackward
cudnnStatus_t cudnnDropoutBackward(
 cudnnHandle_t handle,
 const cudnnDropoutDescriptor_t dropoutDesc,
 const cudnnTensorDescriptor_t dydesc,
 const void *dy,
 const cudnnTensorDescriptor_t dxdesc,
 void *dx,
 void *reserveSpace,
 size_t reserveSpaceSizeInBytes)

This function performs backward dropout operation over dy returning results in dx.
If during forward dropout operation value from x was propagated to y then during
backward operation value from dy will be propagated to dx, otherwise, dx value will be
set to 0.

Better performance is obtained for fully packed tensors

Parameters
handle

Input. Handle to a previously created cuDNN context.
dropoutDesc

Input. Previously created dropout descriptor object.
dyDesc

Input. Handle to a previously initialized tensor descriptor.
dy

Input. Pointer to data of the tensor described by the dyDesc descriptor.
dxDesc

Input. Handle to a previously initialized tensor descriptor.
dx

Output. Pointer to data of the tensor described by the dxDesc descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 172

reserveSpace

Input. Pointer to user-allocated GPU memory used by this function. It is expected that
reserveSpace was populated during a call to cudnnDropoutForward and has not
been changed.

reserveSpaceSizeInBytes

Input. Specifies size in bytes of the provided memory for the reserve space

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ The number of elements of input tensor and output tensors differ.
‣ The datatype of the input tensor and output tensors differs.
‣ The strides of the input tensor and output tensors differ and in-place operation is

used (i.e., x and y pointers are equal).
‣ The provided reserveSpaceSizeInBytes is less then the value returned by

cudnnDropoutGetReserveSpaceSize
‣ cudnnSetDropoutDescriptor has not been called on dropoutDesc with the

non-NULL states argument

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.120. cudnnCreateSpatialTransformerDescriptor
cudnnStatus_t cudnnCreateSpatialTransformerDescriptor(
 cudnnSpatialTransformerDescriptor_t *stDesc)

This function creates a generic spatial transformer descriptor object by allocating the
memory needed to hold its opaque structure.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 173

4.121. cudnnDestroySpatialTransformerDescriptor
cudnnStatus_t cudnnDestroySpatialTransformerDescriptor(
 cudnnSpatialTransformerDescriptor_t stDesc)

This function destroys a previously created spatial transformer descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.122. cudnnSetSpatialTransformerNdDescriptor
cudnnStatus_t cudnnSetSpatialTransformerNdDescriptor(
 cudnnSpatialTransformerDescriptor_t stDesc,
 cudnnSamplerType_t samplerType,
 cudnnDataType_t dataType,
 const int nbDims,
 const int dimA[])

This function initializes a previously created generic spatial transformer descriptor
object.

Parameters
stDesc

Input/Output. Previously created spatial transformer descriptor object.
samplerType

Input. Enumerant to specify the sampler type.
dataType

Input. Data type.
nbDims

Input. Dimension of the transformed tensor.
dimA

Input. Array of dimension nbDims containing the size of the transformed tensor for
every dimension.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ Either stDesc or dimA is NULL.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 174

‣ Either dataType or samplerType has an invalid enumerant value

4.123. cudnnSpatialTfGridGeneratorForward
cudnnStatus_t cudnnSpatialTfGridGeneratorForward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void *theta,
 void *grid)

This function generates a grid of coordinates in the input tensor corresponding to each
pixel from the output tensor.

Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.
theta

Input. Affine transformation matrix. It should be of size n*2*3 for a 2d transformation,
where n is the number of images specified in stDesc.

grid

Output. A grid of coordinates. It is of size n*h*w*2 for a 2d transformation, where n,
h, w is specified in stDesc. In the 4th dimension, the first coordinate is x, and the
second coordinate is y.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is NULL.
‣ One of the parameters grid, theta is NULL.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The dimension of transformed tensor specified in stDesc > 4.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 175

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.124. cudnnSpatialTfGridGeneratorBackward
cudnnStatus_t cudnnSpatialTfGridGeneratorBackward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void *dgrid,
 void *dtheta)

This function computes the gradient of a grid generation operation.

Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.
dgrid

Input. Data pointer to GPU memory contains the input differential data.
dtheta

Output. Data pointer to GPU memory contains the output differential data.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is NULL.
‣ One of the parameters dgrid, dtheta is NULL.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The dimension of transformed tensor specified in stDesc > 4.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 176

4.125. cudnnSpatialTfSamplerForward
cudnnStatus_t cudnnSpatialTfSamplerForward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *grid,
 const void *beta,
 cudnnTensorDescriptor_t yDesc,
 void *y)

This function performs a sampler operation and generates the output tensor using the
grid given by the grid generator.

Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.
alpha,beta

Input. Pointers to scaling factors (in host memory) used to blend the source value
with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
grid

Input. A grid of coordinates generated by
cudnnSpatialTfGridGeneratorForward.

yDesc

Input. Handle to the previously initialized output tensor descriptor.
y

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 177

CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is NULL.
‣ One of the parameters x, y, grid is NULL.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The dimension of transformed tensor > 4.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.126. cudnnSpatialTfSamplerBackward
cudnnStatus_t cudnnSpatialTfSamplerBackward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,
 const void *alphaDgrid,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const void *grid,
 const void *betaDgrid,
 void *dgrid)

This function computes the gradient of a sampling operation.

Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.
alpha,beta

Input. Pointers to scaling factors (in host memory) used to blend the source value
with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue +
beta[0]*priorDstValue. Please refer to this section for additional details.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 178

xDesc

Input. Handle to the previously initialized input tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc.

alphaDgrid,betaDgrid

Input. Pointers to scaling factors (in host memory) used to blend the gradient
outputs dgrid with prior value in the destination pointer as follows: dstValue =
alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for additional
details.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
grid

Input. A grid of coordinates generated by
cudnnSpatialTfGridGeneratorForward.

dgrid

Output. Data pointer to GPU memory contains the output differential data.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

‣ handle is NULL.
‣ One of the parameters x,dx,y,dy,grid,dgrid is NULL.
‣ The dimension of dy differs from those specified in stDesc

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

‣ The dimension of transformed tensor > 4.

cuDNN API Reference

www.nvidia.com
cuDNN DU-06702-001_v07 | 179

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

www.nvidia.com
cuDNN DU-06702-001_v07 | 180

Chapter 5.
ACKNOWLEDGMENTS

Some of the cuDNN library routines were derived from code developed by others and
are subject to the following:

5.1. University of Tennessee
Copyright (c) 2010 The University of Tennessee.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer listed in this license in the documentation and/or
 other materials provided with the distribution.
 * Neither the name of the copyright holders nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5.2. University of California, Berkeley
COPYRIGHT

All contributions by the University of California:
Copyright (c) 2014, The Regents of the University of California (Regents)

Acknowledgments

www.nvidia.com
cuDNN DU-06702-001_v07 | 181

All rights reserved.

All other contributions:
Copyright (c) 2014, the respective contributors
All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over
their contributions to Caffe. The project versioning records all such
contribution and copyright details. If a contributor wants to further mark
their specific copyright on a particular contribution, they should indicate
their copyright solely in the commit message of the change when it is
committed.

LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment,
or otherwise, the contributor releases their content to the
license and copyright terms herein.

5.3. Facebook AI Research, New York
Copyright (c) 2014, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

 * Neither the name Facebook nor the names of its contributors may be used to
 endorse or promote products derived from this software without specific
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

Acknowledgments

www.nvidia.com
cuDNN DU-06702-001_v07 | 182

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional Grant of Patent Rights

"Software" means fbcunn software distributed by Facebook, Inc.

Facebook hereby grants you a perpetual, worldwide, royalty-free, non-exclusive,
irrevocable (subject to the termination provision below) license under any
rights in any patent claims owned by Facebook, to make, have made, use, sell,
offer to sell, import, and otherwise transfer the Software. For avoidance of
doubt, no license is granted under Facebookâ€™s rights in any patent claims that
are infringed by (i) modifications to the Software made by you or a third party,
or (ii) the Software in combination with any software or other technology
provided by you or a third party.

The license granted hereunder will terminate, automatically and without notice,
for anyone that makes any claim (including by filing any lawsuit, assertion or
other action) alleging (a) direct, indirect, or contributory infringement or
inducement to infringe any patent: (i) by Facebook or any of its subsidiaries or
affiliates, whether or not such claim is related to the Software, (ii) by any
party if such claim arises in whole or in part from any software, product or
service of Facebook or any of its subsidiaries or affiliates, whether or not
such claim is related to the Software, or (iii) by any party relating to the
Software; or (b) that any right in any patent claim of Facebook is invalid or
unenforceable.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DIGITS, DGX, DGX-1, Jetson, Kepler,

NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2017 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Overview
	General Description
	2.1. Programming Model
	2.2. Notation
	2.3. Tensor Descriptor
	2.3.1. WXYZ Tensor Descriptor
	2.3.2. 4-D Tensor Descriptor
	2.3.3. 5-D Tensor Description
	2.3.4. Fully-packed tensors
	2.3.5. Partially-packed tensors
	2.3.6. Spatially packed tensors
	2.3.7. Overlapping tensors

	2.4. Thread Safety
	2.5. Reproducibility (determinism)
	2.6. Scaling parameters alpha and beta
	2.7. Tensor Core Operations
	2.7.1. Tensor Core Operations Notes

	2.8. GPU and driver requirements
	2.9. Backward compatibility and deprecation policy
	2.10. Grouped Convolutions

	cuDNN Datatypes Reference
	3.1. cudnnHandle_t
	3.2. cudnnStatus_t
	3.3. cudnnTensorDescriptor_t
	3.4. cudnnFilterDescriptor_t
	3.5. cudnnConvolutionDescriptor_t
	3.6. cudnnMathType_t
	3.7. cudnnNanPropagation_t
	3.8. cudnnDeterminism_t
	3.9. cudnnActivationDescriptor_t
	3.10. cudnnPoolingDescriptor_t
	3.11. cudnnOpTensorOp_t
	3.12. cudnnOpTensorDescriptor_t
	3.13. cudnnReduceTensorOp_t
	3.14. cudnnReduceTensorIndices_t
	3.15. cudnnIndicesType_t
	3.16. cudnnReduceTensorDescriptor_t
	3.17. cudnnCTCLossDescriptor_t
	3.18. cudnnDataType_t
	3.19. cudnnTensorFormat_t
	3.20. cudnnConvolutionMode_t
	3.21. cudnnConvolutionFwdPreference_t
	3.22. cudnnConvolutionFwdAlgo_t
	3.23. cudnnConvolutionFwdAlgoPerf_t
	3.24. cudnnConvolutionBwdFilterPreference_t
	3.25. cudnnConvolutionBwdFilterAlgo_t
	3.26. cudnnConvolutionBwdFilterAlgoPerf_t
	3.27. cudnnConvolutionBwdDataPreference_t
	3.28. cudnnConvolutionBwdDataAlgo_t
	3.29. cudnnConvolutionBwdDataAlgoPerf_t
	3.30. cudnnSoftmaxAlgorithm_t
	3.31. cudnnSoftmaxMode_t
	3.32. cudnnPoolingMode_t
	3.33. cudnnActivationMode_t
	3.34. cudnnLRNMode_t
	3.35. cudnnDivNormMode_t
	3.36. cudnnBatchNormMode_t
	3.37. cudnnRNNDescriptor_t
	3.38. cudnnPersistentRNNPlan_t
	3.39. cudnnRNNMode_t
	3.40. cudnnDirectionMode_t
	3.41. cudnnRNNInputMode_t
	3.42. cudnnRNNAlgo_t
	3.43. cudnnCTCLossAlgo_t
	3.44. cudnnDropoutDescriptor_t
	3.45. cudnnSpatialTransformerDescriptor_t
	3.46. cudnnSamplerType_t
	3.47. cudnnErrQueryMode_t

	cuDNN API Reference
	4.1. cudnnGetVersion
	4.2. cudnnGetCudartVersion
	4.3. cudnnGetProperty
	4.4. cudnnGetErrorString
	4.5. cudnnQueryRuntimeError
	4.6. cudnnCreate
	4.7. cudnnDestroy
	4.8. cudnnSetStream
	4.9. cudnnGetStream
	4.10. cudnnCreateTensorDescriptor
	4.11. cudnnSetTensor4dDescriptor
	4.12. cudnnSetTensor4dDescriptorEx
	4.13. cudnnGetTensor4dDescriptor
	4.14. cudnnSetTensorNdDescriptor
	4.15. cudnnGetTensorNdDescriptor
	4.16. cudnnGetTensorSizeInBytes
	4.17. cudnnDestroyTensorDescriptor
	4.18. cudnnTransformTensor
	4.19. cudnnAddTensor
	4.20. cudnnOpTensor
	4.21. cudnnReduceTensor
	4.22. cudnnSetTensor
	4.23. cudnnScaleTensor
	4.24. cudnnCreateFilterDescriptor
	4.25. cudnnSetFilter4dDescriptor
	4.26. cudnnGetFilter4dDescriptor
	4.27. cudnnSetFilterNdDescriptor
	4.28. cudnnGetFilterNdDescriptor
	4.29. cudnnDestroyFilterDescriptor
	4.30. cudnnCreateConvolutionDescriptor
	4.31. cudnnSetConvolutionMathType
	4.32. cudnnGetConvolutionMathType
	4.33. cudnnSetConvolutionGroupCount
	4.34. cudnnGetConvolutionGroupCount
	4.35. cudnnSetConvolution2dDescriptor
	4.36. cudnnGetConvolution2dDescriptor
	4.37. cudnnGetConvolution2dForwardOutputDim
	4.38. cudnnSetConvolutionNdDescriptor
	4.39. cudnnGetConvolutionNdDescriptor
	4.40. cudnnGetConvolutionNdForwardOutputDim
	4.41. cudnnDestroyConvolutionDescriptor
	4.42. cudnnFindConvolutionForwardAlgorithm
	4.43. cudnnFindConvolutionForwardAlgorithmEx
	4.44. cudnnGetConvolutionForwardAlgorithm
	4.45. cudnnGetConvolutionForwardAlgorithm_v7
	4.46. cudnnGetConvolutionForwardWorkspaceSize
	4.47. cudnnConvolutionForward
	4.48. cudnnConvolutionBiasActivationForward
	4.49. cudnnConvolutionBackwardBias
	4.50. cudnnFindConvolutionBackwardFilterAlgorithm
	4.51. cudnnFindConvolutionBackwardFilterAlgorithmEx
	4.52. cudnnGetConvolutionBackwardFilterAlgorithm
	4.53. cudnnGetConvolutionBackwardFilterAlgorithm_v7
	4.54. cudnnGetConvolutionBackwardFilterWorkspaceSize
	4.55. cudnnConvolutionBackwardFilter
	4.56. cudnnFindConvolutionBackwardDataAlgorithm
	4.57. cudnnFindConvolutionBackwardDataAlgorithmEx
	4.58. cudnnGetConvolutionBackwardDataAlgorithm
	4.59. cudnnGetConvolutionBackwardDataAlgorithm_v7
	4.60. cudnnGetConvolutionBackwardDataWorkspaceSize
	4.61. cudnnConvolutionBackwardData
	4.62. cudnnSoftmaxForward
	4.63. cudnnSoftmaxBackward
	4.64. cudnnCreatePoolingDescriptor
	4.65. cudnnSetPooling2dDescriptor
	4.66. cudnnGetPooling2dDescriptor
	4.67. cudnnSetPoolingNdDescriptor
	4.68. cudnnGetPoolingNdDescriptor
	4.69. cudnnDestroyPoolingDescriptor
	4.70. cudnnGetPooling2dForwardOutputDim
	4.71. cudnnGetPoolingNdForwardOutputDim
	4.72. cudnnPoolingForward
	4.73. cudnnPoolingBackward
	4.74. cudnnActivationForward
	4.75. cudnnActivationBackward
	4.76. cudnnCreateActivationDescriptor
	4.77. cudnnSetActivationDescriptor
	4.78. cudnnGetActivationDescriptor
	4.79. cudnnDestroyActivationDescriptor
	4.80. cudnnCreateLRNDescriptor
	4.81. cudnnSetLRNDescriptor
	4.82. cudnnGetLRNDescriptor
	4.83. cudnnDestroyLRNDescriptor
	4.84. cudnnLRNCrossChannelForward
	4.85. cudnnLRNCrossChannelBackward
	4.86. cudnnDivisiveNormalizationForward
	4.87. cudnnDivisiveNormalizationBackward
	4.88. cudnnBatchNormalizationForwardInference
	4.89. cudnnBatchNormalizationForwardTraining
	4.90. cudnnBatchNormalizationBackward
	4.91. cudnnDeriveBNTensorDescriptor
	4.92. cudnnCreateRNNDescriptor
	4.93. cudnnDestroyRNNDescriptor
	4.94. cudnnCreatePersistentRNNPlan
	4.95. cudnnSetPersistentRNNPlan
	4.96. cudnnDestroyPersistentRNNPlan
	4.97. cudnnSetRNNDescriptor
	4.98. cudnnSetRNNDescriptor_v6
	4.99. cudnnSetRNNDescriptor_v5
	4.100. cudnnGetRNNWorkspaceSize
	4.101. cudnnGetRNNTrainingReserveSize
	4.102. cudnnGetRNNParamsSize
	4.103. cudnnGetRNNLinLayerMatrixParams
	4.104. cudnnGetRNNLinLayerBiasParams
	4.105. cudnnRNNForwardInference
	4.106. cudnnRNNForwardTraining
	4.107. cudnnRNNBackwardData
	4.108. cudnnRNNBackwardWeights
	4.109. cudnnGetCTCLossWorkspaceSize
	4.110. cudnnCTCLoss
	4.111. cudnnCreateDropoutDescriptor
	4.112. cudnnDestroyDropoutDescriptor
	4.113. cudnnDropoutGetStatesSize
	4.114. cudnnDropoutGetReserveSpaceSize
	4.115. cudnnSetDropoutDescriptor
	4.116. cudnnGetDropoutDescriptor
	4.117. cudnnRestoreDropoutDescriptor
	4.118. cudnnDropoutForward
	4.119. cudnnDropoutBackward
	4.120. cudnnCreateSpatialTransformerDescriptor
	4.121. cudnnDestroySpatialTransformerDescriptor
	4.122. cudnnSetSpatialTransformerNdDescriptor
	4.123. cudnnSpatialTfGridGeneratorForward
	4.124. cudnnSpatialTfGridGeneratorBackward
	4.125. cudnnSpatialTfSamplerForward
	4.126. cudnnSpatialTfSamplerBackward

	Acknowledgments
	5.1. University of Tennessee
	5.2. University of California, Berkeley
	5.3. Facebook AI Research, New York

